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Abstract Our aim in this paper is to establish some strong stability properties of a solution
of a stochastic differential equation driven by a fractional Brownian motion for which the
pathwise uniqueness holds. The results are obtained using Skorokhod’s selection theorem.
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1 Introduction

Consider a fractional Brownian motion (fBm), a self-similar Gaussian process with
stationary increments. It was introduced by Kolmogorov [5] and studied by Man-
delbrot and Van Ness [6]. The fBm with Hurst parameter H ∈ (0, 1) is a centered
Gaussian process with covariance function

RH (t, s) = E
(
BH

t BH
s

) = 1

2

(
t2H + s2H − |t − s|2H

)
.
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If H = 1/2, then the process B1/2 is a standard Brownian motion. When H �= 1
2 ,

BH is neither a semimartingale nor a Markov process, so that many of the techniques
employed in stochastic analysis are not available for an fBm. The self-similarity and
stationarity of increments make the fBm an appropriate model for many applications
in diverse fields from biology to finance. We refer to [7] for details on these notions.

Consider the following stochastic differential equation (SDE){
dXt = b(t, Xt ) dt + dBH

t ,

X0 = x ∈ R
d,

(1)

where b : [0, T ] × R
d → R

d is a measurable function, and BH is a d-dimensional
fBm with Hurst parameter H < 1/2 whose components are one-dimensional inde-
pendent fBms defined on a probability space (Ω,F , {Ft }t∈[0,T ], P ), where the filtra-
tion {Ft }t∈[0,T ] is generated by BH

t , t ∈ [0, T ], augmented by the P -null sets. It has
been proved in [2] that if b satisfies the assumption

b ∈ L1,∞∞ := L∞([0, T ]; L1(
R

d
) ∩ L∞(

R
d
))

, (2)

for H < 1
2(3d−1)

, then Eq. (1) has a unique strong solution, which will be assumed
throughout this paper.

Notice that if the drift coefficient is Lipschitz continuous, then Eq. (1) has a unique
strong solution, which is continuous with respect to the initial condition. Moreover,
the solution can be constructed using various numerical schemes.

Our purpose in this paper is to establish some stability results under the path-
wise uniqueness of solutions and under weak regularity conditions on the drift coef-
ficient b. We mention that a considerable result in this direction has been established
in [1] when an fBm is replaced by a standard Brownian motion.

The paper is organized as follows. In Section 2, we introduce some properties,
notation, definitions, and preliminary results. Section 3 is devoted to the study of the
variation of solution with respect to the initial data. In the last section, we drop the
continuity assumption on the drift and try to obtain the same result as in Section 3.

2 Preliminaries

In this section, we give some properties of an fBm, definitions, and some tools used
in the proofs.

For any H < 1/2, let us define the square-integrable kernel

KH (t, s) = cH

[(
t

s

)H− 1
2 −

(
H − 1

2

)
s

1
2 −H

∫ t

s

(u − s)H− 1
2 uH− 3

2 du

]
, t > s,

where cH = [ 2H

(1−2H)β(1−2H,H+ 1
2 ))

]1/2, t > s.

Note that

∂KH

∂t
(t, s) = cH

(
H − 1

2

)(
t

s

)H− 1
2

(t − s)H− 3
2 .
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Let BH = {BH
t , t ∈ [0, T ]} be an fBm defined on (Ω,F , {Ft }t∈[0,T ], P ). We denote

by ζ the set of step functions on [0, T ]. Let H be the Hilbert space defined as the
closure of ζ with respect to the scalar product

〈1[0,t], 1[0,s]〉H = RH (t, s).

The mapping 1[0,t] → BH
t can be extended to an isometry between H and the Gaus-

sian subspace of L2(Ω) associated with BH , and such an isometry is denoted by
ϕ → BH (ϕ).

Now we introduce the linear operator K∗
H from ζ to L2([0, T ]) defined by

(
K∗

H ϕ
)
(s) = KH (b, s)ϕ(s) +

∫ b

s

(
ϕ(t) − ϕ(s)

)∂KH

∂t
(t, s) dt.

The operator K∗
H is an isometry between ζ and L2([0, T ]), which can be extended to

the Hilbert space H.
Define the process W = {Wt, t ∈ [0, T ]} by

Wt = BH
((

K∗
H

)−11[0,t]
)
.

Then W is a Brownian motion; moreover, BH has the integral representation

BH
t =

∫ t

0
KH (t, s) dW(s).

We need also to define an isomorphism KH from L2([0, T ]) onto I
H+ 1

2
0+ (L2) associ-

ated with the kernel KH (t, s) in terms of the fractional integrals as follows:

(KH ϕ)(s) = I 2H
0+ s

1
2 −H I

1
2 −H

0+ sH− 1
2 ϕ, ϕ ∈ L2([0, T ]).

Note that, for ϕ ∈ L2([0, T ]), Iα
0+ is the left fractional Riemann-Liouville integral

operator of order α defined by

Iα
0+ϕ(x) = 1

Γ (α)

∫ x

0
(x − y)α−1ϕ(y) dy,

where Γ is the gamma function (see [3] for details).
The inverse of KH is given by(

K−1
H ϕ

)
(s) = s

1
2 −H D

1
2 −H

0+ sH− 1
2 D2H

0+ ϕ(s), ϕ ∈ I
H+ 1

2
0+

(
L2),

where for ϕ ∈ I
H+ 1

2
0+ (L2), Dα

0+ is the left-sided Riemann Liouville derivative of order
α defined by

Dα
0+ϕ(x) = 1

Γ (1 − α)

d

dx

∫ x

0

ϕ(y)

(x − y)α
dy.

If ϕ is absolutely continuous (see [8]), then(
K−1

H ϕ
)
(s) = sH− 1

2 I
1
2 −H

0+ s
1
2 −H ϕ′(s). (3)
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Definition 2.1. On a given probability space (Ω,F , P ), a process X is called a strong
solution to (1) if

(1) X is {Ft }t∈[0,T ] adapted, where {Ft }t∈[0,T ] is the filtration generated by BH
t , t ∈

[0, T ];
(2) X satisfies (1).

Definition 2.2. A sextuple (Ω,F , {Ft }t∈[0,T ], P ,X,BH ) is called a weak solution
to (1) if

(1) (Ω,F , P ) is a probability space equipped with the filtration {Ft }t∈[0,T ] that
satisfies the usual conditions;

(2) X is an {Ft }t∈[0,T ]-adapted process, and BH is an {Ft }t∈[0,T ]-fBm;

(3) X and BH satisfy (1).

Definition 2.3 (Pathwise uniqueness). We say that pathwise uniqueness holds for
Eq. (1) if whenever (X,BH ) and (X̃, BH ) are two weak solutions of Eq. (1) defined
on the same probability space (Ω,F , (Ft )t∈[0,T ], P ), then X and X̃ are indistinguish-
able.

The main tool used in the proofs is Skorokhod’s selection theorem given by the
following lemma.

Lemma 2.4. ([4], p. 9) Let (S, ρ) be a complete separable metric space, and let
P , Pn, n = 1, 2, . . ., be probability measures on (S,B(S)) such that Pn converges
weakly to P as n → ∞. Then, on a probability space (Ω̃, F̃ , P̃ ), we can construct
S-valued random variables X, Xn, n = 1, 2, . . ., such that:

(i) Pn = P̃ Xn , n = 1, 2, . . ., and P = P̃ X, where P̃ Xn and P̃ X are respectively
the laws of Xn and X;

(ii) Xn converges to X P̃ -a.s.

We will also make use of the following result, which gives a criterion for the
tightness of sequences of laws associated with continuous processes.

Lemma 2.5. ([4], p. 18) Let {Xn
t , t ∈ [0, T ]}, n = 1, 2, . . ., be a sequence of d-

dimensional continuous processes satisfying the following two conditions:

(i) There exist positive constants M and γ such that E[|Xn(0)|γ ] ≤ M for every
n = 1, 2, . . .;

(ii) there exist positive constants α, β, Mk , k = 1, 2, . . ., such that, for every n ≥ 1
and all t, s ∈ [0, k], k = 1, 2, . . .,

E
[∣∣Xn

t − Xn
s

∣∣α] ≤ Mk|t − s|1+β.

Then, there exist a subsequence (nk), a probability space (Ω̃, F̃ , P̃ ), and d-dimen-
sional continuous processes X̃, X̃nk , k = 1, 2, . . ., defined on Ω̃ such that

(1) The laws of X̃nk and Xnk coincide;

(2) X̃
nk
t converges to X̃t uniformly on every finite time interval P̃ -a.s.
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3 Variation of solutions with respect to initial conditions

The purpose of this section is to ensure the continuous dependence of the solution
with respect to the initial condition when the drift b is continuous and bounded. Note
that, in the case of ordinary differential equation, the continuity of the coefficient is
sufficient to ensure this dependence.

Next, we give a theorem that will be essential in establishing the desired result.

Theorem 3.1. Let b be a continuous bounded function. Then, under the pathwise
uniqueness for SDE (1), we have

lim
x→x0

E
[

sup
0≤t≤T

∣∣Xt(x) − Xt(x0)
∣∣2

]
= 0.

Before we proceed to the proof of Theorem 3.1, we state the following technical
lemma.

Lemma 3.2. Let Xn be the solution of (1) corresponding to the initial condition
xn. Then, for every p > 1

2H
, there exists a positive constant Cp such that, for all

s, t ∈ [0, T ],
E

[∣∣Xn
t − Xn

s

∣∣2p] ≤ Cp|t − s|2pH .

Proof. Fix s < t in [0, T ]. We have

∣∣Xn
t − Xn

s

∣∣2p ≤ Cp

[∣∣∣∣∫ t

s

b
(
u,Xn

u

)
du

∣∣∣∣2p

+ ∣∣BH
t − BH

s

∣∣2p
]
.

Due to the stationarity of the increments and the scaling property of an fBm and the
boundedness of b, we get that

E
∣∣Xn

t − Xn
s

∣∣2p ≤ Cp

[|t − s|2p + |t − s|2pH
]

≤ Cp|t − s|2pH ,

which finishes the proof.

Let us now turn to the proof of Theorem 3.1.

Proof. Suppose that the result of the theorem is false. Then there exist a constant
δ > 0 and a sequence xn converging to x0 such that

inf
n

E
[

sup
0≤t≤T

∣∣Xt(xn) − Xt(x0)
∣∣2

]
≥ δ.

Let Xn (respectively, X) be the solution of (1) corresponding to the initial condition
xn (respectively, x0). According to Lemma 3.2, the sequence (Xn,X,BH ) satisfies
conditions (i) and (ii) of Lemma 2.5. Then, by Skorokhod’s selection theorem there
exist a subsequence {nk, k ≥ 1}, a probability space (Ω̃, F̃ , P̃ ), and stochastic pro-
cesses (X̃, Ỹ , B̃H ), (X̃k, Ỹ k, B̃H,k), k ≥ 1, defined on (Ω̃, F̃ , P̃ ) such that:

(α) for each k ≥ 1, the laws of (X̃k, Ỹ k, B̃H,k) and (Xnk ,X,BH ) coincide;
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(β) (X̃k, Ỹ k, B̃H,k) converges to (X̃, Ỹ , B̃H ) uniformly on every finite time inter-
val P̃ -a.s.

Thanks to property (α), we have, for k ≥ 1 and t > 0,

E

∣∣∣∣X̃k
t − xk −

∫ t

0
b
(
s, X̃k

s

)
ds − B̃

H,k
t

∣∣∣∣2

= 0.

In other words, X̃k
t satisfies the following SDE:

X̃k
t = xk +

∫ t

0
b
(
s, X̃k

s

)
ds + B̃

H,k
t .

Similarly,

Ỹ k
t = x0 +

∫ t

0
b
(
s, Ỹ k

s

)
ds + B̃

H,k
t .

Using (β), we deduce that

lim
k→∞

∫ t

0
b
(
s, X̃k

s

)
ds =

∫ t

0
b(s, X̃s) ds

and

lim
k→∞

∫ t

0
b
(
s, Ỹ k

s

)
ds =

∫ t

0
b(s, Ỹs) ds

in probability and uniformly in t ∈ [0, T ].
Thus, the processes X̃ and Ỹ satisfy the same SDE on (Ω̃, F̃ , P̃ ) with the same

driving noise B̃H
t and the initial condition x0. Then, by pathwise uniqueness, we

conclude that X̃t = Ỹt for all t ∈ [0, T ], P̃ -a.s.
On the other hand, by uniform integrability we have that

δ ≤ lim inf
n

E
[

max
0≤t≤T

∣∣Xt(xn) − Xt(x0)
∣∣2

]
= lim inf

k
Ẽ

[
max

0≤t≤T

∣∣X̃k
t − Ỹ k

t

∣∣2
]

≤ Ẽ
[

max
0≤t≤T

|X̃t − Ỹt |2
]
,

which is a contradiction. Then the desired result follows.

4 The case of discontinuous drift coefficient

In this section, we drop the continuity assumption on the drift coefficient and only
assume that b is bounded. The goal of this section is to generate the same result as in
Theorem 3.1 without the continuity assumption.

Next, in order to use the fractional Girsanov theorem given in [8, Thm. 2], we
should first check that the conditions imposed in the latter are satisfied in our context.
This will be done in the following lemma.
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Lemma 4.1. Suppose that X is a solution of SDE (1), and let b be a bounded function.
Then the process v = K−1

H (
∫ ·

0 b(r,Xr) dr) enjoys the following properties:

(1) vs ∈ L2([0, T ]), P -a.s.;

(2) E[exp{ 1
2

∫ T

0 |vs |2 ds}] < ∞.

Proof. (1) In light of (3), we can write

|vs | = ∣∣sH− 1
2 I

1
2 −H

0+ s
1
2 −H

∣∣b(s,Xs)
∣∣∣∣

= 1

Γ ( 1
2 − H)

sH− 1
2

∫ s

0
(s − r)−

1
2 −H r

1
2 −H

∣∣b(r,Xr)
∣∣ dr

≤ ‖b‖∞
1

Γ ( 1
2 − H)

sH− 1
2

∫ s

0
(s − r)−

1
2 −H r

1
2 −H dr

= ‖b‖∞
Γ ( 3

2 − H)

Γ (2 − 2H)
s

1
2 −H

≤ ‖b‖∞
Γ ( 3

2 − H)

Γ (2 − 2H)
T

1
2 −H ,

where ‖ · ‖∞ denotes the norm in L∞([0, T ]; L∞(Rd)).
As a result, we get that ∫ T

0
|vs |2 ds < ∞, P -a.s.

(2) The second item is obtained easily by the following estimate:

E

[
exp

{
1

2

∫ T

0
|vs |2 ds

}]
≤ exp

{
1

2
CH T 2(1−H)‖b‖2∞

}
,

where CH = Γ ( 3
2 −H)2

Γ (2−2H)2 , which finishes the proof.

Next, we will establish the following Krylov-type inequality that will play an
essential role in the sequel.

Lemma 4.2. Suppose that X is a solution of SDE (1). Then, there exists β > 1 + dH

such that, for any measurable nonnegative function g : [0, T ] × R
d �→ R

d+, we have

E

∫ T

0
g(t,Xt ) dt ≤ M

(∫ T

0

∫
Rd

gβ(t, x) dx dt

)1/β

, (4)

where M is a constant depending only on T , d , β, and H .

Proof. Let W be a d-dimensional Brownian motion such that

BH
t =

∫ t

0
KH (t, s) dWs.
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For the process v introduced in Lemma 4.1, let us define P̂ by

dP̂

dP
= exp

{
−

∫ T

0
vt dWt − 1

2

∫ T

0
v2
t dt

}
:= Z−1

T .

Then, in light of Lemma 4.1 together with the fractional Girsanov theorem [8, Thm. 2],
we can conclude that P̂ is a probability measure under which the process X − x is an
fBm.

Now, applying Hölder’s inequality, we have

E

∫ T

0
g(t,Xt ) dt = Ê

{
ZT

∫ T

0
g(t,Xt ) dt

}
≤ C

{
Ê

[
Zα

T

]}1/α
{
Ê

∫ T

0
gρ(t, Xt ) dt

}1/ρ

, (5)

where 1/α + 1/ρ = 1, and C is a positive constant depending only on T , α, and ρ.
From [2, Lemma 4.3] we can see that Ê[Zα

T ] satisfies the following property:

Ê
[
Zα

T

] ≤ CH,d,T

(‖b‖∞
)

< ∞, (6)

where CH,d,T is a continuous increasing function depending only on H , d , and T .
On the other hand, applying again Hölder’s inequality with 1/γ + 1/γ ′ = 1 and

γ > dH + 1, we obtain

Ê

∫ T

0
gρ(t, Xt ) dt =

∫ T

0

∫
Rd

gρ(t, y)
(
2πt2H

)−d/2
exp−‖y−x‖2/2t2H

dy dt

≤
(∫ T

0

∫
Rd

(
2πt2H

)−dγ ′/2 exp−γ ′‖y−x‖2/2t2H

dy dt

)1/γ ′

×
(∫ T

0

∫
Rd

gργ (t, y) dy dt

)1/γ

. (7)

A direct calculation gives∫
Rd

(
2πt2H

)−dγ ′/2 exp−γ ′‖y−x‖2/2t2H

dy = (2π)d/2−dγ ′/2(γ ′)−d/2
t (1−γ ′) dH .

Plugging this into (7), we get

Ê

∫ T

0
gρ(t, Xt ) dt ≤

(∫ T

0
(2π)d/2−dγ ′/2(γ ′)−d/2

t (1−γ ′) dH dt

)1/γ ′

×
(∫ T

0

∫
Rd

gργ (t, y) dy dt

)1/γ

≤ (
(2π)d/2−dγ ′/2(γ ′)−d/2)1/γ ′

(∫ T

0
t (1−γ ′) dH dt

)1/γ ′
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×
(∫ T

0

∫
Rd

gργ (t, y) dy dt

)1/γ

≤ C
(
γ ′, T , d,H

)(∫ T

0

∫
Rd

gργ (t, y) dy dt

)1/γ

.

Finally, combining this with (5) and (6), we get estimate (4) with β = ργ . The proof
is now complete.

Now we are able to state the main result of this section.

Theorem 4.3. If the pathwise uniqueness holds for Eq. (1), then without the continu-
ity assumption on the drift coefficient, the conclusion of Theorem 3.1 remains valid.

Proof. The proof is similar to that of Theorem 3.1. The only difficulty is to show that

lim
k→∞

∫ t

0
b
(
s, X̃k

s

)
ds =

∫ t

0
b(s, X̃s) ds

in probability. In other words, for ε > 0, we will show that

lim sup
k→∞

P

[∣∣∣∣∫ t

0

(
b
(
s, X̃k

s

) − b(s, X̃s)
)
ds

∣∣∣∣ > ε

]
= 0. (8)

Let us first define
bδ(t, x) = δ−dφ(x/δ) ∗ b(t, x),

where ∗ denotes the convolution on R
d , and φ is an infinitely differentiable function

with support in the unit ball such that
∫

φ(x) dx = 1.
Applying Chebyshev’s inequality, we obtain

P

[∣∣∣∣∫ t

0

(
b
(
s, X̃k

s

) − b(s, X̃s)
)
ds

∣∣∣∣ > ε

]
≤ 1

ε2
E

[∫ t

0

∣∣b(
s, X̃k

s

) − b(s, X̃s)
∣∣2

ds

]
≤ 4

ε2

{
E

[∫ t

0

∣∣b(
s, X̃k

s

) − bδ
(
s, X̃k

s

)∣∣2
ds

]
+ E

[∫ t

0

∣∣bδ
(
s, X̃k

s

) − bδ(s, X̃s)
∣∣2

ds

]
+ E

[∫ t

0

∣∣bδ(s, X̃s) − b(s, X̃s)
∣∣2

ds

]}
= 4

ε2
(J1 + J2 + J3).

From the continuity of bδ in x and from the convergence of X̃k
s to X̃s uniformly on

every finite time interval P̃ a.s. it follows that J2 converges to 0 as k → ∞ for every
δ > 0.
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On the other hand, let θ : Rd → R+ be a smooth truncation function such that
θ(z) = 1 in the unit ball and θ(z) = 0 for |z| > 1.

By applying Lemma 4.2 we obtain

J1 = E

∫ t

0
θ
(
X̃k

s /R
)∣∣bδ

(
s, X̃k

s

) − b
(
s, X̃k

s

)∣∣2
ds

+ E

∫ t

0

(
1 − θ

(
X̃k

s /R
))∣∣bδ

(
s, X̃k

s

) − b
(
s, X̃k

s

)∣∣2
ds

≤ N
∥∥bδ − b

∥∥
β,R

+ 2CE

∫ t

0

(
1 − θ

(
X̃k

s /R
))

ds, (9)

where N does not depend on δ and k, and ‖ · ‖β,R denotes the norm in Lβ([0, T ] ×
B(0, R)).

The last expression in the right-hand side of the last inequality satisfies the fol-
lowing estimate:

E

∫ t

0

(
1 − θ

(
X̃k

s /R
))

ds ≤ sup
k≥1

P
[
sup
s≤t

∣∣X̃k
s

∣∣ > R
]
. (10)

But we know that supk≥1 E[sups≤t |X̃k
s |p] < ∞ for all p > 1, and thus

lim
R→∞ sup

k≥1
P

[
sup
s≤t

∣∣X̃k
s

∣∣ > R
]

= 0. (11)

Substituting estimate (10) into (9), letting δ → 0, and using (11), we deduce that the
convergence of the term J1 follows.

Finally, since estimate (10) also holds for X̃, it suffices to use the same arguments
as before to obtain the convergence of the term J3, which completes the proof.
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