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Abstract Let {ξ1, ξ2, . . .} be a sequence of independent random variables, and η be a count-
ing random variable independent of this sequence. In addition, let S0 := 0 and Sn := ξ1 +
ξ2 + · · · + ξn for n � 1. We consider conditions for random variables {ξ1, ξ2, . . .} and η under
which the distribution functions of the random maximum ξ(η) := max{0, ξ1, ξ2, . . . , ξη} and
of the random maximum of sums S(η) := max{S0, S1, S2, . . . , Sη} belong to the class of con-
sistently varying distributions. In our consideration the random variables {ξ1, ξ2, . . .} are not
necessarily identically distributed.

Keywords Heavy tail, consistently varying tail, randomly stopped maximum, randomly
stopped maximum of sums, closure property
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1 Introduction

Let {ξ1, ξ2, . . .} be a sequence of independent random variables (r.v.s) with distribu-
tion functions (d.f.s) {Fξ1 , Fξ2, . . .}, and let η be a counting r.v., that is, an integer-
valued, nonnegative, and nondegenerate at zero r.v. In addition, suppose that the r.v.
η and r.v.s {ξ1, ξ2, . . .} are independent.
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Let S0 = 0, Sn = ξ1 + ξ2 + · · · + ξn for n ∈ N, and let

Sη =
η∑

k=1

ξk

be the randomly stopped sum of r.v.s {ξ1, ξ2, . . .}.
Similarly, let ξ(n) = max{0, ξ1, ξ2, . . . , ξn} for n ∈ N, ξ(0) = 0, and let

ξ(η) =
{

max{0, ξ1, ξ2, . . . , ξη} if η � 1,

0 if η = 0

be the randomly stopped maximum of r.v.s {ξ1, ξ2, . . .}.
Finally, let S(n) := max{S0, S1, S2, . . . , Sn} for n � 0, and let

S(η) := max{S0, S1, S2, . . . , Sη}
be the randomly stopped maximum of sums S0, S1, S2, . . ..

We denote the distribution functions (d.f.s) of Sη, ξ(η), and S(η) by FSη , Fξ(η)
, and

FS(η)
respectively, together with their tails FSη , Fξ(η)

, and FS(η)
. For any positive x,

we have

FSη(x) =
∞∑

n=1

P(η = n)P(Sn > x),

F ξ(η)
(x) =

∞∑
n=1

P(η = n)P(ξ(n) > x),

F S(η)
(x) =

∞∑
n=1

P(η = n)P(S(n) > x).

In [14], conditions were found for the d.f.s FSη to belong to the class of consis-
tently varying distributions. In this paper, we are interested in sufficient conditions
under which the d.f.s Fξ(η)

and FS(η)
have consistently varying tails.

Throughout this paper, for two vanishing (at infinity) functions f and g,
f (x)= o(g(x)) means that limx→∞ f (x)/g(x) = 0, and f (x) ∼ g(x) means that
limx→∞ f (x)/g(x) = 1. Also, we denote the support of a counting r.v. η by

supp(η) := {
n ∈ Z+ : P(η = n) > 0

}
.

Before discussing the properties of Fξ(η)
and FS(η)

, we recall the definitions of

some classes of heavy-tailed d.f.s. For a d.f. F , we denote F(x) = 1 − F(x) for
real x.

• A d.f. F is heavy-tailed (F ∈ H) if for every δ > 0,

lim
x→∞ F(x)eδx = ∞.



Randomly stopped maximum and maximum of sums with consistently varying distributions 67

• A d.f. F is long-tailed (F ∈ L) if for every y (equivalently, for some y > 0),
F(x + y) ∼ F(x).

• A d.f. F has dominatingly varying tail (F ∈ D) if for every y ∈ (0, 1) (equiva-
lently, for some y ∈ (0, 1)),

lim sup
x→∞

F(xy)

F (x)
< ∞.

• A d.f. F has consistently varying tail (F ∈ C) if

lim
y↑1

lim sup
x→∞

F(xy)

F (x)
= 1.

• A d.f. F has regularly varying tail (F ∈ R) if there is α � 0 such that

lim
x→∞

F(xy)

F (x)
= y−α,

for all y > 0.

• A d.f. F supported on the interval [0,∞) is subexponential (F ∈ S) if

lim
x→∞

F ∗ F(x)

F (x)
= 2. (1)

If a d.f. G is supported on R, then we say that G is subexponential (G ∈ S) if
the d.f. F(x) = G(x)1[0,∞)(x) satisfies relation (1).

It is known (see, e.g., [5, 12, 15], and Chapters 1.4 and A3 in [10]) that these
classes satisfy the following inclusions:

R ⊂ C ⊂ L ∩ D ⊂ S ⊂ L ⊂ H, D ⊂ H.

These inclusions are depicted in Fig. 1 borrowed from the paper [14]. In this figure,
the class C of distributions having consistently varying tails is highlighted.

It should be noted that the subject of the paper is partially motivated by the clo-
sure problem of the random convolution. In the case of independent and identically
distributed (i.i.d.) r.v.s {ξ, ξ1, ξ2, . . .}, we say that a class K of d.f.s is closed with
respect to the random convolution if the condition Fξ ∈ K implies FSη ∈ K. The
first result on the convolution closure of subexponential distributions was obtained
by Embrechts and Goldie (see Thm. 4.2 in [11]) and by Cline (see Thm. 2.13 in [6]).

Theorem 1. Let {ξ1, ξ2, . . .} be independent copies of a nonnegative r.v. ξ with subex-
ponential d.f. Fξ . Let η be a counting r.v. independent of {ξ1, ξ2, . . .}. If E(1 + δ)η <

∞ for some δ > 0, then the d.f. FSη ∈ S .

The random closure results for class D can be found in [7, 16], and for the class
L, in [1, 16, 19, 20]. The random closure results for the class C can be derived from
the results of [14]. We note that in [7, 14, 20], the case of not necessarily identically
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Fig. 1. Classes of heavy-tailed distributions

distributed r.v.s {ξ1, ξ2, . . .} was considered. We further recall two known results.
First, in Theorem 2, we give conditions for FSη to belong to the class D. Its proof can
be found in [7, Thm. 2.1]. Recall that a d.f. F belongs to the class D if and only if its
upper Matuszewska index J+

F < ∞, where by definition

J+
F = − lim

y→∞
1

log y
log

(
lim inf
x→∞

F(xy)

F (x)

)
.

Theorem 2. Let r.v.s {ξ1, ξ2, . . .} be nonnegative independent but not necessary iden-
tically distributed, and η be a counting r.v. independent of {ξ1, ξ2, . . .}. Then the d.f.
FSη belongs to the class D if the following three conditions are satisfied:

(i) Fξκ ∈ D for some κ ∈ supp(η),

(ii) lim sup
x→∞

sup
n�κ

1

nF ξκ (x)

n∑
i=1

Fξi
(x) < ∞,

(iii) Eηp+1 < ∞ for some p > J+
Fξκ

.

A similar result for r.v.s having d.f.s with consistently varying tails can be found
in [14, Thm. 6].

Theorem 3. Let {ξ1, ξ2, . . .} be independent real-valued r.v.s, and η be a counting r.v.
independent of {ξ1, ξ2, . . .}. Then the d.f. FSη belongs to the class C if the following
conditions are satisfied:

(a) Fξ1 ∈ C,

(b) for each k � 2, either Fξk
∈ C or Fξk

(x)= o
(
Fξ1(x)

)
,

(c) lim sup
x→∞

sup
n�1

1

nF ξ1(x)

n∑
i=1

Fξi
(x) < ∞,

(d) Eηp+1 < ∞ for some p > J+
Fξ1

.

In this work, we consider the randomly stopped maximum ξ(η) and randomly
stopped maximum of sums S(η) of independent but not necessarily identically dis-
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tributed r.v.s. As was noted before, we restrict our consideration to the class C but
extend it to the real-valued r.v.s as in Theorem 3.

If r.v.s {ξ1, ξ2, . . .} are not identically distributed, then different collections of
conditions on r.v.s {ξ1, ξ2, . . .} and η imply that Fξ(η)

∈ C or FS(η)
∈ C. We suppose

that some r.v.s from {ξ1, ξ2, . . .} have distributions belonging to the class C, and we
find conditions for r.v.s {ξ1, ξ2, . . .} and η such that the distribution of the randomly
stopped maximum or the randomly stopped maximum of sums remains in the same
class. The results presented and their proofs are closely related to the results of the
papers [7, 8, 14].

It is worth noting that the closure properties for d.f.s FS(η)
in the case of i.i.d. r.v.s

can be derived, for instance, from the asymptotic formulas obtained in [9, 13, 17, 18,
21]. Unfortunately, in the case of nonidentically distributed r.v.s, similar asymptotic
formulas do not exist. Therefore we have to use other methods to prove our main
results.

The rest of the paper is organized as follows. In Section 2, we present our main re-
sults together with a few examples of randomly stopped maximum ξ(η) and randomly
stopped maximum of sums S(η) with d.f.s having consistently varying tails. Section 3
is a collection of auxiliary lemmas, and the proofs of the main results are presented
in Section 4.

2 Main results

In this section, we present four statements, two theorems and two corollaries. Theo-
rem 4 and Corollary 1 deal with the belonging of the d.f. Fξ(η)

to the class C.

Theorem 4. Let {ξ1, ξ2, . . . } be a sequence of independent real-valued r.v.s, and let
η be a counting r.v. independent of {ξ1, ξ2, . . . }. The d.f. of the randomly stopped
maximum Fξ(η)

belongs to the class C if the following conditions hold:

(a) Fξκ ∈ C for some κ ∈ supp(η),

(b) for each k 
= κ, either Fξk
∈ C or Fξk

(x) = o
(
Fξκ (x)

)
,

(c) lim sup
x→∞

sup
n�1

1

ϕ(n)F ξκ (x)

n∑
k=1

Fξk
(x) < ∞,

where {ϕ(n)}∞n=1 is a positive sequence such that E(ϕ(η)1[1,∞)(η)) < ∞.

If r.v.s {ξ1, ξ2, . . .} are identically distributed with common d.f. Fξ ∈ C, then
conditions (a), (b), and (c) are satisfied with ϕ(n) = n for n ∈ N. Hence, the following
statement immediately follows from Theorem 4.

Corollary 1. Let {ξ1, ξ2, . . . } be a sequence of i.i.d. real-valued r.v.s with common
d.f. Fξ ∈ C, and let η be a counting r.v. independent of {ξ1, ξ2, . . . }. The d.f. of the
randomly stopped maximum Fξ(η)

belongs to the class C if Eη is finite.

In Theorem 5 and Corollary 2, we present conditions under which the d.f. of the
randomly stopped maximum of sums S(η) has consistently varying tail.

Theorem 5. Let {ξ1, ξ2, . . . } be independent real-valued r.v.s, and let η be a counting
r.v. independent of {ξ1, ξ2, . . . }. The d.f. FS(η)

belongs to the class C if the following
conditions hold:



70 I.M. Andrulytė et al.

(a) Fξk
∈ C for each k ∈ N,

(b) lim sup
x→∞

sup
n�1

1

nF ξ1(x)

n∑
k=1

Fξk
(x) < ∞,

(c) Eηp+1 < ∞ for some p > J+
Fξ1

.

Similarly to Corollary 1, we can state the following corollary. We note that in the
i.i.d. case condition (b) is obviously satisfied if Fξ1(x) > 0 for all x ∈ R.

Corollary 2. Let {ξ1, ξ2, . . . } be i.i.d. real-valued r.v.s with common d.f. Fξ ∈ C, and
let η is a counting r.v. independent of {ξ1, ξ2, . . .}. The d.f. FS(η)

belongs to the class

C if Eηp+1 < ∞ for some p > J+
Fξ

.

Further in this section, we present two examples of r.v.s {ξ1, ξ2, . . .} and η show-
ing the applicability of our theorems.

Example 1. Let {ξ1, ξ2, . . .} be independent r.v.s such that:

• r.v.s ξk are exponentially distributed for k ≡ 0 mod 3, that is,

Fξk
(x) = 1(−∞,0)(x) + e−x1[0,∞)(x), k ∈ {3, 6, 9, . . .};

• r.v.s ξk are degenerate at zero for all k ≡ 2 mod 3 and k ≡ 1 mod 3, k � 4,
that is,

Fξk
(x) = 1[0,∞)(x), k ∈ {2, 5, 8, . . .} ∪ {4, 7, 10, . . .};

• ξ1 = (1+U)2G , where r.v.s U and G are independent, U is uniformly distributed
on the interval [0, 1], and G is geometrically distributed with parameter q ∈
(0, 1), that is,

P(G = l) = (1 − q)ql, l ∈ {0, 1, 2, . . .}.
In addition, let η be a counting r.v. independent of {ξ1, ξ2, . . .}.

Theorem 4 implies that the d.f. of the randomly stopped maximum ξ(η) belongs
to the class C if 1 ∈ supp(η) and Eη < ∞ because:

• Fξ1 ∈ C, but Fξ1 /∈ R due to considerations in pp. 122–123 of [2],

• Fξk
(x) = o(F ξ1(x)) for each k 
= 1,

• sup
n�1

1
nF ξ1 (x)

n∑
k=1

Fξk
(x) � 2 for sufficiently large x.

Example 2. Let {ξ1, ξ2, . . .} be independent r.v.s distributed according to Pareto-type
laws, namely,

Fξk
(x) = 1(−∞,0)(x) + 1

(1 + x)3
1[0,∞)(x) if k ∈ {1, 3, 5, . . .},

F ξk
(x) = 1(−∞,−1)(x) + 1

(2 + x)3
1[−1,∞)(x) if k ∈ {2, 4, 6, . . .}.
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Further, let η be a counting r.v. independent of {ξ1, ξ2, . . .} that has the zeta distribu-
tion with parameter 6, that is,

P(η = m) = 1

ζ(6)

1

(m + 1)6
, m ∈ {0, 1, 2, . . .},

where ζ denotes the Riemann zeta function.

Theorem 5 implies that the d.f. of the randomly stopped maximum of sums S(η)

belongs to the class C because:

• Fξk
∈ R ⊂ C for each k ∈ N;

• sup
n�1

1
nF ξ1 (x)

n∑
k=1

Fξk
(x) = 1 for positive x;

• J+
Fξ1

= 3 and Eη4.5 < ∞.

3 Auxiliary lemmas

In this section, we give auxiliary lemmas, which we use in the proof of Theorem 5.
The first lemma was proved in [17, Thm. 2.1]; a more general case can be found in
[3, Thm. 2.1]. We recall only that C ⊂ L. Hence, the statement of the next lemma
holds for d.f.s with consistently varying tails.

Lemma 1. Let {X1, X2, . . . , Xn} be independent real-valued r.v.s such that FXk
∈ L

for all k ∈ N. Then

P

(
max

1�k�n

k∑
i=1

Xi > x

)
∼

x→∞ P

( n∑
i=1

Xi > x

)
.

The second auxiliary lemma was proved in [14, Lemma 3]. It describes the situa-
tion where the d.f. of sums of independent r.v.s belongs to the class C.

Lemma 2. Let {X1, X2, . . . , Xn} be independent real-valued r.v.s. The d.f. of the sum
Σn := X1 + X2 + · · · + Xn belongs to the class C if the following two conditions are
satisfied:

(a) FX1 ∈ C,

(b) for each k ∈ {2, . . . , n}, either FXk
∈ C or FXk

(x) = o
(
FX1(x)

)
.

The following statement was proved in [7, Lemma 3.2]. It gives an upper estimate
for the tail of the sum of r.v.s from the class D.

Lemma 3. Let {X1, X2, . . . } be nonnegative independent r.v.s, FXν ∈ D for some
ν � 1 such that

lim sup
x→∞

sup
n�ν

1

nFXν (x)

n∑
i=1

FXi
(x) < ∞.
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Then, for each p > J+
FXν

, there exists a positive constant c1 such that

FΣn(x) � c1n
p+1FXν (x),

for all n � ν and x � 0, where FΣn is the d.f. of the sum Σn = X1 + · · · + Xn.

The last useful lemma is an obvious conclusion from Theorem 3.1 in [4].

Lemma 4. Let {X1, X2, . . . Xn} be independent real-valued r.v.s. If FXk
∈ C for each

k ∈ {1, 2, . . . , n}, then

P

( n∑
i=1

Xi > x

)
∼

n∑
i=1

FXi
(x).

4 Proofs of the main results

Proof of Theorem 4. It suffices to prove that

lim sup
y↑1

lim sup
x→∞

Fξ(η)
(xy)

F ξ(η)
(x)

� 1. (2)

For all x > 0 and K ∈ N, we have

Fξ(η)
(x) =

∞∑
n=1

Fξ(n)
(x)P(η = n)

=
( K∑

n=1

+
∞∑

n=K+1

)
P

( n⋃
k=1

{ξk > x}
)
P(η = n).

Therefore,

Fξ(η)
(xy)

F ξ(η)
(x)

=
∑K

n=1 P
(⋃n

k=1{ξk > xy})P(η = n)

P(ξ(η) > x)

+
∑∞

n=K+1 P
(⋃n

k=1{ξk > xy})P(η = n)

P(ξ(η) > x)

=: J1 + J2, (3)

for all x > 0 and y ∈ (0, 1).
Denote

K := {
k ∈ N : Fξk

/∈ C and Fξk
(x) = o

(
Fξκ (x)

)}
.

If x > 0, 1/2 � y < 1, and K � κ, then

J1 � 1

Fξ(η)
(x)

K∑
n=1

n∑
k=1
k /∈K

Fξk
(xy)P(η = n) +

K∑
n=1

n∑
k=1
k∈K

Fξk
(x/2)

F ξ(η)
(x)

P(η = n). (4)
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If k ∈ K, then
Fξk

(x/2) = o
(
Fξ(η)

(x)
)
, (5)

because

Fξk
(x/2)

F ξ(η)
(x)

� Fξk
(x/2)

F ξ(κ)
(x)P(η = κ)

� Fξk
(x/2)

F ξκ (x/2)P (η = κ)

F ξκ (x/2)

F ξκ (x)
,

and Fξκ ∈ C ⊂ D.
The obtained asymptotic relation (5) and estimate (4) imply

lim sup
x→∞

J1 � lim sup
x→∞

1

Fξ(η)
(x)

K∑
n=1

n∑
k=1
k /∈K

Fξk
(xy)P(η = n)

� lim sup
x→∞

(
max

1�k�K
k/∈K

{
Fξk

(xy)

F ξk
(x)

}
1

Fξ(η)
(x)

K∑
n=1

n∑
k=1
k /∈K

Fξk
(x)P(η = n)

)

� max
1�k�K

k/∈K

{
lim sup
x→∞

Fξk
(xy)

F ξk
(x)

}

× lim sup
x→∞

{
1

Fξ(η)
(x)

K∑
n=1

n∑
k=1

Fξk
(x)P(η = n)

}
. (6)

For each 1 � n � K , we have

Fξ(n)
(x) = P

( n⋃
k=1

{ξk > x}
)
�

n∑
k=1

Fξk
(x)

(
1 −

K∑
k=1

Fξk
(x)

)
,

due to the Bonferroni inequality. This implies that, for an arbitrary ε > 0,

n∑
k=1

Fξk
(x) � (1 + ε)F ξ(n)

(x),

if x is sufficiently large.
Substituting the last estimate into inequality (6), we get

lim sup
y↑1

lim sup
x→∞

J1 � (1 + ε) max
1�k�K

k/∈K

{
lim sup

y↑1
lim sup
x→∞

Fξk
(xy)

F ξk
(x)

}

= 1 + ε,

because Fξk
∈ C for each k /∈ K.

Since ε > 0 is arbitrary, the last estimate implies that

lim sup
y↑1

lim sup
x→∞

J1 � 1. (7)
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Since

P(ξ(η) > x) � P(ξ(κ) > x)P(η = κ) � P(ξκ > x)P(η = κ),

we obtain

J2 �
∑∞

n=K+1
∑n

k=1 Fξk
(xy)P(η = n)

F ξκ (x)P(η = κ)
,

for all x > 0 and y ∈ (0, 1).
Condition (c) of the theorem implies that, for some constant c2 > 0,

n∑
k=1

Fξk
(x) � c2ϕ(n)F ξκ (x),

for all sufficiently large x and all n � 1.
Consequently,

lim sup
y↑1

lim sup
x→∞

J2

� lim sup
y↑1

lim sup
x→∞

c2Fξκ (xy)
∑∞

n=K+1 ϕ(n)P(η = n)

F ξκ (x)P(η = κ)

= c2

P(η = κ)

(
lim sup

y↑1
lim sup
x→∞

Fξκ (xy)

F ξκ (x)

) ∞∑
n=K+1

ϕ(n)P(η = n). (8)

Relations (3), (7), and (8) imply that

lim sup
y↑1

lim sup
x→∞

Fξ(η)
(xy)

F ξ(η)
(x)

� 1 + c2

P(η = κ)
E

(
ϕ(η)1[K+1,∞)(η)

)
,

for arbitrary K � κ.
The desired inequality (2) now follows from the last estimate because

E(ϕ(η)1[1,∞)(η)) is finite due to the conditions of the theorem. Theorem 4 is proved.

Proof of Theorem 5. Similarly as in the proof of Theorem 4, it suffices to show that

lim sup
y↑1

lim sup
x→∞

FS(η)
(xy)

F S(η)
(x)

� 1. (9)

If K ∈ N and x > 0, then

P(S(η) > x) =
( K∑

n=1

+
∞∑

n=K+1

)
P(S(n) > x)P(η = n).

Therefore,

P(S(η) > xy)

P(S(η) > x)
=

∑K
n=1 P(S(n) > xy)P(η = n)

P(S(η) > x)
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+
∑∞

n=K+1 P(S(n) > xy)P(η = n)

P(S(η) > x)

=: I1 + I2, (10)

for all x > 0 and y ∈ (0, 1).
The r.v. η is not degenerate at zero. Therefore, there exists a ∈ N such that P(η =

a) > 0. If K � a, then

I1 �
∑K

n=1 P(S(n) > xy)P(η = n)∑K
n=1 P(S(n) > x)P(η = n)

� max
1�n�K
n∈supp(η)

P(S(n) > xy)

P(S(n) > x)
,

due to the inequality

a1 + a2 + · · · + am

b1 + b2 + · · · + bm

� max

{
a1

b1
,
a2

b2
, . . . ,

am

bm

}
,

provided for all ai � 0, bi > 0, i ∈ {1, 2, . . . , m}, and m ∈ N.
Since C ⊂ L, using Lemma 1, we obtain

lim sup
y↑1

lim sup
x→∞

I1

� lim sup
y↑1

lim sup
x→∞

max
1�n�K
n∈supp(η)

F S(n)
(xy)

F S(n)
(x)

= max
1�n�K
n∈supp(η)

lim sup
y↑1

lim sup
x→∞

FS(n)
(xy)

F Sn(xy)

F Sn(xy)

F Sn(x)

F Sn(x)

F S(n)
(x)

� max
1�n�K

lim sup
y↑1

lim sup
x→∞

FSn(xy)

F Sn(x)
.

According to Lemma 2, the d.f. FSn belongs to the class C for each fixed n. There-
fore,

lim sup
y↑1

lim sup
x→∞

I1 � 1. (11)

Let us now consider the term I2 from expression (10). If x > 0, then the numer-
ator of I2 can be estimated as follows:

∞∑
n=K+1

P(S(n) > xy)P(η = n)

=
∞∑

n=K+1

P
(
max{S1, . . . , Sn} > xy

)
P(η = n)

�
∞∑

n=K+1

P
(
max

{
S

(+)
1 , . . . , S(+)

n

}
> xy

)
P(η = n)
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=
∞∑

n=K+1

P
(
S(+)

n > xy
)
P(η = n),

where S
(+)
k := ξ+

1 + · · · + ξ+
k and ξ+ := ξ1[0,∞)(ξ).

We can apply Lemma 3 for the last sum because of condition (b) of the theorem
and the fact that Fξ1 ∈ C ⇒ Fξ+

1
∈ D. Using this lemma, we get

∞∑
n=K+1

P(S(n) > xy)P(η = n) � c3Fξ1(xy)
∞∑

n=K+1

np+1
P(η = n), (12)

for some positive constant c3 and for all x > 0 and y ∈ (0, 1).
On the other hand, for the denominator of I2, we have

P(S(η) > x) =
∞∑

n=1

P(S(n) > x)P(η = n)

� P
(
max{S1, . . . , Sa} > x

)
P(η = a)

� P(Sa > x)P(η = a).

According to the conditions of the theorem, the d.f. Fξk
belongs to the class C for

each fixed index k ∈ N. Hence, using Lemma 4, we get

lim inf
x→∞

P(Sa > x)

F ξ1(x)
� lim inf

x→∞
P(Sa > x)∑a

i=1 Fξi
(x)

lim inf
x→∞

∑a
i=1 Fξi

(x)

F ξ1(x)

= lim inf
x→∞

∑a
i=1 Fξi

(x)

F ξ1(x)
� lim inf

x→∞
Fξ1(x)

F ξ1(x)
= 1.

The last two estimates imply that

P(S(η) > x) � 1

2
Fξ1(x)P(η = a), (13)

for sufficiently large x.
Therefore, by inequalities (12) and (13) we have

lim sup
y↑1

lim sup
x→∞

I2

� 2c3

P(η = a)

(
lim sup

y↑1
lim sup
x→∞

Fξ1(xy)

F ξ1(x)

) ∞∑
n=K+1

np+1
P(η = n). (14)

Finally, substituting estimates (11) and (14) into (10), we obtain that

lim sup
y↑1

lim sup
x→∞

P(S(η) > xy)

P(S(η) > x)
� 1 + 2c3

P(η = a)
E

(
ηp+11[K+1,∞)(η)

)
,

for an arbitrary K � a.
This inequality implies the desired relation (9) due to condition (c) of the theorem.

Theorem 5 is proved.
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