
Modern Stochastics: Theory and Applications 4 (2017) 79–89
DOI: 10.15559/17-VMSTA75

Asymptotic behaviour of non-isotropic random walks
with heavy tails

Mark Kelberta,∗, Enzo Orsingherb

aNational Research University Higher School of Economics, Moscow RF
bSapienza University of Rome

mkelbert@hse.ru (M. Kelbert), enzo.orsingher@uniroma1.it (E. Orsingher)

Received: 24 November 2016, Revised: 9 March 2017, Accepted: 14 March 2017,
Published online: 6 April 2017

Abstract A random flight on a plane with non-isotropic displacements at the moments of di-
rection changes is considered. In the case of exponentially distributed flight lengths a Gaussian
limit theorem is proved for the position of a particle in the scheme of series when jump lengths
and non-isotropic displacements tend to zero. If the flight lengths have a folded Cauchy distri-
bution the limiting distribution of the particle position is a convolution of the circular bivariate
Cauchy distribution with a Gaussian law.

Keywords Random flights, non-Gaussian limit theorem, Bessel functions

1 Introduction

We consider the problem of random flights in Euclidean spaces defined by a series
of displacements, r̄j , the magnitude and direction of each one being independent of
all the previous ones. This model was introduced by Karl Pearson in 1905 and has
a long and interesting history, both as a purely mathematical problem in probability
theory and as a model for various physical and chemical processes [2]. The majority
of papers investigate the problem of random flights with the orientation of move-
ments uniformly distributed over a sphere, and deviations separated by exponentially
distributed or Dirichlet distributed time lapses (cf. discussions in [5, 6, 10]). For the
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most recent developments in the studying of the random walks in a random environ-
ment we refer to [3] and the papers cited therein. In this short note we introduce a
novel feature in the form of non-isotropic displacements at the moments of the direc-
tion changes. As a model of this non-isotropic perturbation we consider Hadamard’s
(or componentwise) product of a fixed deterministic vector (Δ1,Δ2) with the unit
vector ē = (cos θj , sin θj ) in the direction of the previous movement. In the follow-
ing analysis these perturbations are assumed to be small and the direction changes
are frequent enough. In this note we are mainly interested in the case where the dis-
tribution of the i.i.d. flight lengths has a heavy tail, say it follows a folded Cauchy
distribution.

More precisely, we consider a planar, non-isotropic random walk performed by a
particle taking steps (Xj , Yj ), j ∈ N. We assume that

Xj = (Rj + Δ1) cos θj , Yj = (Rj + Δ2) sin θj , (1)

where θj and Rj = |r̄j | are independent positive random variables (hereafter r.v.’s),
and Δ1 �= Δ2 are deterministic positive real numbers. We assume that θj are uni-
formly distributed in [0, 2π) and positive r.v.’s Rj are identically distributed with
density f (r), r > 0. Clearly, after n steps the position reached by the moving particle
is given by

X̂n =
n∑

j=1

Xj , Ŷn =
n∑

j=1

Yj . (2)

A possible sample path of the random walk (2) is depicted in Figure 1 and can

Fig. 1. A sample path of the random walk

be interpreted as the position of a particle taking jumps at integer-valued times,
with arbitrary orientation. Since Δ1 �= Δ2, the distribution of the random walk
(X̂n, Ŷn), n ≥ 1, as well as that of its asymptotic limiting process, is not rotation in-
variant. If the angles θj are non-uniformly distributed on [0, 2π) the resulting random
motion is anisotropic as well, this case will be studied elsewhere. Here two qualita-
tively different examples are considered: 1) the exponential distribution of the i.i.d.
flight lengths, and 2) the folded Cauchy distribution when all the moments mr, r ≥ 1
are infinite. Naturally, in the former case under a suitable scaling one obtains the
Gaussian limit with independent components having different variances. In the latter
case the limiting law is a convolution of a circular bivariate Cauchy distribution with
a Gaussian law.
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2 Main results

In case 1) we are working under the following assumptions

• (i) The jump lengths Rj = |r̄j |, j = 1, . . . , n are exponentially distributed
with parameter

μ(n) = μ

t
n−1/2. (3)

• (ii) The asymmetry conditions: for some C1, C2 > 0 (we are interested in the
case C1 �= C2)

Δ
(n)
i = Cin

−1/2, i = 1, 2, (4)

i.e. the displacement vectors decrease with n and are the same for all 1 ≤ j ≤ n.
Condition (i) means that for fixed values of n the step lengths Rj are i.i.d. with ex-
ponential distribution whose parameter μ(n) is adjusted continuously. One can easily
see that EXj = EYj = 0. Next,

EX2
1 = (

ER2
1 + 2Δ1ER1 + Δ2

1

)
E

[
(cos θ)2] ≈ n−1

(
t2

μ2
+ C1t

μ
+ C2

1

2

)
, (5)

in view of the equality E[(cos θ)2] = 1
2 . In fact, (5) is an identity. Here and in what

follows the symbol ≈ is used to indicate that LHS is an expansion of RHS up to
O(n−k) for some k ∈ Z but the difference RHS–LHS is o(n−k). Similarly,

EY 2
1 ≈ n−1

(
t2

μ2
+ C2t

μ
+ C2

2

2

)
.

Moreover, Xj and Yj are dependent but not correlated r.v.’s. These facts suggest that
a joint limiting distribution is Gaussian and is represented in the form of two indepen-
dent diffusions. The proof may be provided by the standard methods via the checking
Lindeberg’s conditions. However, we prefer to use a direct computation to pave the
way for further results for r.v.’s with the heavy tails.

Theorem 1. Under the assumptions (3) and (4) the sequence (X̂n, Ŷn) defined in (2)
weakly converges to the zero-mean Gaussian vector (X, Y ) where X, Y are indepen-
dent and possess the variances

Var(X) = t2

μ2
+ C1t

μ
+ C2

1

2
, Var(Y ) = t2

μ2
+ C2t

μ
+ C2

2

2
. (6)

Our main result in Theorem 2 below establishes the limiting law for the (folded)
Cauchy flights:

f (r) = 2

π

a

r2 + a2
, a > 0, r > 0. (7)

Let us remind that the standard circular bivariate Cauchy distribution has the joint
PDF (see [8], Ch.II, formula (1.19) or [9])

f (x1, x2) = 1

2π

1

(1 + x2
1 + x2

2)3/2
. (8)
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Theorem 2. Assume the condition (4) and fix b > 0. Let the parameter of the folded
Cauchy distribution (7) for the jump lengths be scaled as an = πb

2n
. Then the distribu-

tion of random vector (X̂n, Ŷn) weakly converges as n → ∞ to the convolution of the
cumulative distribution functions FX,Y ◦FV,W where (X, Y ) is a zero mean Gaussian
vector with independent components,

Var(X) = C2
1

2
, Var(Y ) = C2

2

2
, (9)

and the vector (V ,W) has a circular bivariate Cauchy distribution with the shape
parameter b, i.e.

fV,W (x1, x2) = 1

2π

b

(b2 + x2
1 + x2

2)3/2
. (10)

Remark 1. Let us represent the position of the moving particle as a result of n

random flights and n non-isotropic displacements X̂n = Un + Tn, Ŷn = Vn + Sn.
Here Un = ∑n

j=1 Rj cos θj , Tn = Δ1
∑n

j=1 cos θj , Vn = ∑n
j=1 Rj sin θj , Sn =

Δ2
∑n

j=1 sin θj . Then

EeiαX̂n+iβŶn = E
[
ei(αUn+βVn)ei(αTn+βSn)

]
. (11)

The expectations in the RHS of (11) may be split as n → ∞, cf. (38) below. Moreover
Tn and Sn are asymptotically independent. However, the pair (Un, Vn) asymptotically
follows a circular bivariate Cauchy law.

3 Proofs

The initial steps are the same for both Theorems 1 and 2 and valid for any PDF f (r)

of flight lengths. They are based on the properties of Bessel functions Jν(x) which
are solutions of ODEs

Ly = x2 d2y

dx2
+ x

dy

dx
+ (

x2 − ν2)y = 0, (12)

and admit the expansion [1, 11]

Jν(x) =
∞∑

m=0

(−1)m

m!Γ (m + k + 1)

(
x

2

)2m+ν

. (13)

Let us fix a small open neighbourhood U of (0, 0). For (α, β) ∈ U the characteristic
function of the steps (Xj , Yj ) reads

ϕ(α, β) = E
[
exp

(
iα[R + Δ1] cos θ + iβ[R + Δ2] sin θ

)]
= 1

2π

∫ 2π

0
dθ

∫ ∞

0
eiα(r+Δ1) cos θ+iβ(r+Δ2) sin θf (r) dr

=
∫ ∞

0
J0

(√(
α2 + β2

)
r2 + 2r

(
α2Δ1 + β2Δ2

) + (
α2Δ2

1 + β2Δ2
2

))
f (r) dr.

(14)
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Due to the addition formula of Bessel functions ([4], formula 8.531, page 979)

J0
(√

r̃2 + ρ2 − 2r̃ρ cos φ
) = J0(r̃)J0(ρ) + 2

∞∑
k=1

Jk(r̃)Jk(ρ) cos(kφ), (15)

where, in our case,

r̃2 = (
α2 + β2)r2, ρ2 = (

α2Δ2
1 + β2Δ2

2

)
,

cos φ = − α2Δ1 + β2Δ2√
α2 + β2

√
α2Δ2

1 + β2Δ2
2

. (16)

4 Proof of Theorem 1

For the sake of brevity we omit the upper index μ(n), low index ϕn(α, β), etc., when-
ever it is possible. We can calculate explicitly the characteristic function ϕ(α, β) by
means of integration term by term. Further, we must keep into account the additional
result ∫ ∞

0
e−αxJν(βx) dx = [√α2 + β2 − α]ν

βν
√

α2 + β2
, ν > −1, α > 0 (17)

([4], formula 6.611, page 707).
In view of all these formulas we have that for f (r) = μe−μr

ϕ(α, β)

= J0

(√
α2Δ2

1 + β2Δ2
2

) ∫ ∞

0
μe−μrJ0

(
r

√
α2 + β2

)
dr

+ 2
∞∑

k=1

Jk

(√
α2Δ2

1 + β2Δ2
2

)
cos

(
k arcos

[
− α2Δ1 + β2Δ2√

α2 + β2
√

α2Δ2
1 + β2Δ2

2

])

×
∫ ∞

0
Jk

(
r

√
α2 + β2

)
μe−μr dr

= J0

(√
α2Δ2

1 + β2Δ2
2

) μ√
μ2 + α2 + β2

+ 2μ

∞∑
k=1

Jk

(√
α2Δ2

1 + β2Δ2
2

)
cos

(
k arcos

[
− Δ1α

2 + Δ2β
2√

α2 + β2
√

α2Δ2
1 + β2Δ2

2

])

× (α2 + β2)−k/2√
α2 + β2 + μ2

(√
μ2 + α2 + β2 − μ

)k
. (18)

A crucial point is now to preserve only the relevant terms of the expansion of
ϕn(α, β) in view of the evaluation of the limit for the characteristic function
limn→∞[ϕn(α, β)]n, taking into account that μ = μ(n),Δi = Δ

(n)
i , i = 1, 2. Since

(
√

μ2 + α2 + β2 − μ)k√
μ2 + α2 + β2

= (√
μ2 + α2 + β2

)k−1
(

1 − μ√
μ2 + α2 + β2

)k

, (19)
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we can cut the terms of the expansion for k ≥ 2. To justify this fact let us use the
expansion (13). All the terms with k ≥ 2 in (18) contain the factors (α2Δ2

1+β2Δ2
2)

k/2

and in view of assumptions (3) and (4) it is easy to check that the sum of these terms
is o(n−1) uniformly over (α, β) ∈ U . Hence,

[
ϕn(α, β)

]n ≈
[

μ√
α2 + β2 + μ2

J0

(√
α2Δ2

1 + β2Δ2
2

)

− 2J1

(√
α2Δ2

1 + β2Δ2
2

) α2Δ1 + β2Δ2√
α2 + β2

√
α2Δ2

1 + β2Δ2
2

× μ√
α2 + β2

1√
α2 + β2 + μ2

(√
α2 + β2 + μ2 − μ

)]n

=
[J0(

√
α2Δ2

1 + β2Δ2
2)√

1 + α2+β2

μ2

− 2J1

(√
α2Δ2

1 + β2Δ2
2

) (α2Δ1 + β2Δ2)

(α2 + β2)

√
α2Δ2

1 + β2Δ2
2

× μ

(
1 − μ√

α2 + β2 + μ2

)]n

. (20)

For n → ∞, Δ
(n)
i → 0, i = 1, 2, and since J0(x) ≈ 1 − ( x

2 )2 as x → 0 and
J1(x) ≈ x

2 for small values of x we can obtain the following relationship

[
ϕn(α, β)

]n ≈
[(

1 − α2Δ2
1 + β2Δ2

2

4

)(
1 − α2 + β2

2μ2

)

− α2Δ1 + β2Δ2

α2 + β2
μ

(
1 − 1√

1 + α2+β2

μ2

)]n

. (21)

We now take the equalities

1√
1 + x

=
∞∑

k=0

(−1/2
k

)
xk =

∞∑
k=0

(−1)k
(

2k

k

)
xk

22k
, (22)

and thus for small values of x we have that (1 + x)−1/2 ≈ 1 − x
2 . In conclusion, by

writing explicitly μ(n), Δ
(n)
i , i = 1, 2, as in the assumptions (i) and (ii) we have that

[
ϕn(α, β)

]n ≈
[(

1 − α2Δ2
1 + β2Δ2

2

4

)(
1 − α2 + β2

2(μ(n))2

)

− α2Δ1 + β2Δ2

α2 + β2
μ(n)

(
α2 + β2

2(μ(n))2

)]n
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=
[(

1 − α2Δ2
1 + β2Δ2

2

4

)(
1 − α2 + β2

2(μ(n))2

)
− α2Δ1 + β2Δ2

2μ(n)

]n

(23)

(by assumptions (i) and (ii))

≈
[

1 − α2C2
1 + β2C2

2

4n
− (α2 + β2)t2

2nμ2
−

(
α2 C1√

n
+ β2 C2√

n

)
t

2
√

nμ

]n

=
(

1 − α2C2
1 + β2C2

2

4n
− (α2 + β2)t2

2nμ2
− α2C1 + β2C2

2

t

μ

1

n

)n

→ e− α2VarX+β2VarY
2 .

(24)

This concludes the proof of the Theorem 1.

Remark 2. An interesting question is what are the implications of the assumption
that Δ2

1 and Δ2
2 are negligible with respect to Δ1 and Δ2, Let us apply the following

formula ([4], formula 6.616, page 710)∫ ∞

0
e−αxJ0

(
β

√
x2 + 2γ x

)
dx = 1√

α2 + β2
eγ (α−

√
α2+β2). (25)

By using (25), the characteristic function ϕ(α, β) can be written as

ϕ(α, β) ≈ μ√
μ2 + α2 + β2

e
α2Δ1+β2Δ2

α2+β2 (μ−
√

μ2+α2+β2)
. (26)

Therefore, the characteristic function of (X̂n, Ŷn), in view of the assumptions on μ(n)

and Δ
(n)
i , i = 1, 2, becomes

[
ϕn(α, β)

]n ≈
[

1 − α2 + β2

2(μ(n))2
+ α2Δ1 + β2Δ2

α2 + β2

(
μ(n) − μ(n)

√
1 + α2 + β2

(μ(n))2

)]n

≈
[

1 − α2 + β2

2(μ(n))2
− α2Δ1 + β2Δ2

α2 + β2

α2 + β2

2μ(n)

]n

→ e
− α2

2 ( t2

μ2 + C1 t

μ
)− β2

2 ( t2

μ2 + C2 t

μ
)
. (27)

In the steps above we made use of μ(n)√
(μ(n))2+α2+β2

≈ 1− α2+β2

2(μ(n))2 as n → ∞ in view of

(22), and used assumption (i) afterwards. In contrast to (6) the terms
C2

i

2 are missing
from the limiting expression (27). We conclude that the approximation considered
above leads to the linearization of the limiting variances with respect to C1 and C2.

5 Proof of Theorem 2

In the case of jump lengths with a folded Cauchy distribution (7) the CLT is not
applicable. Again, our goal is to calculate the limiting characteristic function keeping
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the relevant terms in the asymptotic expansion. We omit the lower index in an, ϕn

whenever it is possible. The equalities (14) and (15) imply

ϕ(α, β) = J0(

√
α2Δ2

1 + β2Δ2
2)

2a

π

∫ ∞

0

J0(r
√

α2 + β2)

r2 + a2
dr

− 2J1(

√
α2Δ2

1 + β2Δ2
2)

α2Δ1 + β2Δ2√
α2 + β2

√
α2Δ2

1 + β2Δ2
2

× 2a

π

∫ ∞

0

J1(r
√

α2 + β2)

r2 + a2
dr + o(n−1). (28)

As in Theorem 1 all the terms of the asymptotic expansion (28) with k ≥ 2 contain
the multiplyer of (α2Δ2

1 +β2Δ2
2)

k/2 and the remaining sum is o(n−1) uniformly over
(α, β) ∈ U . Indeed, in view of (13) for k ≥ 2 we have∣∣∣∣Jk

(√
α2Δ2

1 + β2Δ2
2

)∣∣∣∣ < Cn−k/2.

The module of the term cos(kφ) in (15) is estimated by 1. Let c = √
α2 + β2 and δ

be the Kronecker delta-function. Note that for any κ > 0

2a

π

∫ ∞

0

Jk(cr)

r2 + a2
dr < C

(
n

∫ n−2/k−κ

0
rk/2 dr + n−1

∫ ∞

n−2/k−κ

Jk(cr)

r2
dr

)

< C
(
n−κ−κk/2 + 1 + κ

n
ln(n)δk=2 + n−1−κk/2δk>2

)
, (29)

and a similar bound holds from below. Hence, the series is absolutely convergent. For
these reasons it remains to consider the first two terms in the expansion (28).

For this aim note that∫ ∞

0

J1(cr)

r2 + a2
dr = c

a2c2

[∫ ∞

0
J1(u) du −

∫ ∞

0

J1(u)u2

u2 + (ac)2
du

]
, (30)

and
∫ ∞

0 J1(u) du = − ∫ ∞
0 J ′

0(u) du = 1. By differentiating w.r.t. the parameter the
formula 6.532.4 from [4] one gets∫ ∞

0

J1(u)u2

u2 + (ac)2
du = acK1(ac), (31)

where K1 stands for the Macdonald function [1, 11]. So, we obtain that

I1 =
∫ ∞

0

J1(r
√

α2 + β2)

r2 + a2
dr = 1

a2(
√

α2 + β2)

(
1 − a

√
α2 + β2K1

(
a

√
α2 + β2

))
.

(32)
If a = an = πb

2n
then for large n we have K1(ac) = 1

anc
+ anc

4 (2γ − 1) + o(n−1)

where γ = 0.57721566 stands for the Euler–Mascheroni constant and

I1 = 1

a2
nc

[
1 − anc(

1

anc
+ anc

4
(2γ − 1) + o

(
n−1)] = −2γ − 1

4
c + O

(
n−1).



Asymptotic behaviour of non-isotropic random walks with heavy tails 87

As a result we obtain that the second term in (28) is O(n−3/2) and does not contribute
asymptotically.

Alternatively, according to [4], formula 6.532.1 for non-integer ν

Iν(a) =
∫ ∞

0

Jν(x)

x2 + a2
dx = π

a sin(πν)

(
J̄ν(a) − Jν(a)

)
, (33)

where J̄ν(a) stands for the Anger function which is a solution of the inhomogeneous
Bessel equation Ly = (x − ν) sin πx

π
[1]. By definition the Anger functions always

coincide with the Bessel functions for the integer values of ν. The following identity
is well-known [7]

J̄ν(x) = sin πν

π

∞∑
l=−∞

(−1)l
Jl(x)

ν − l
. (34)

So, we use l’Hôpital’s rule to evaluate the integral I1(a) = limν→1 Iν(a) in (33) and
obtain

lim
n→∞ lim

ν→1

π

an sin(πν)

(
J̄ν(an) − Jν(an)

) = 0.

Anyway, we need to evaluate the first term in expansion (28). According to [4],
formula 6.532.6 ∫ ∞

0

J0(bx)

x2 + a2
dx = π

2a

(
I0(ab) − L0(ab)

)
,

where I0 stands for the modified Bessel function and L0 is the modified Struve func-
tion. Let us remind that the modified Struve function satisfies the inhomogeneous
Bessel equation [1, 11]

Ly = x2 d2y

dx2
+ x

dy

dx
− (

x2 + ν2)y = 4(x/2)ν+1

√
πΓ (ν + 1/2)

. (35)

By using expansions of the modified Struve functions in a neighbourhood of 0 (see
[1, 11])

L0(x) =
(

x

2

) ∞∑
k=0

1

(Γ (3/2 + k))2

(
x

2

)2k

, (36)

we write two terms of the asymptotic expansion

2a

π

∫ ∞

0

J0(r
√

α2 + β2)

r2 + a2
dr ≈ 1 + a2(α2 + β2)

4
− a

√
α2 + β2

2Γ (3/2)2
+ · · ·

Finally, in view of the formula 6.565.3 of [4]

∫ ∞

0

xν+1

(x2 + a2)ν+3/2
Jν(bx)dx = bν

√
π

2νaΓ (ν + 3/2)
e−ab. (37)

Applying (37) for ν = 0 we obtain that the characteristic function of the circular

bivariate Cauchy law has the form e−b
√

α2+β2
. So, in the limit we obtain the product
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of the characteristic functions of the Gaussian law and the circular bivariate Cauchy
distribution

lim
n→∞

[
ϕn(α, β)

]n = exp

(
−C2

1

2
α2 − C2

2

2
β2

)
exp

(−b

√
α2 + β2

)
, (38)

and Theorem 2 is proved.
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6 Appendix section

It is interesting that for odd 2n + 1 the integral
∫ ∞

0
J2n+1(cr)

r2+a2 dr can be expressed in

terms of the Macdonald function K2n+1(ac) and for even 2n the integral
∫ ∞

0
J2n(cr)

r2+a2 dr

is a linear combination of the modified Bessel function I2n(ac) and the modified
Struve functions Lk(ac), k ≤ 2n. Let us remind that the Macdonald function Kν(x)

is a positive solution of the equation

Ly = x2 d2y

dx2
+ x

dy

dx
− (

x2 + ν2)y = 0 (39)

vanishing when x → ∞ and the modified Struve function is defined in (35).
For odd order, Bessel functions

∫ ∞
0

J2n+1(cr)

r2+a2 dr, a, c > 0 take the form

2n + 1 = 1 : 1

a2c
− K1(ac)

a
,

2n + 1 = 3 : K3(ac)

a
+ 1

a2c
− 8

a4c3
,

2n + 1 = 5 : −K5(ac)

a
+ 1

a2c
− 24

a4c3
+ 384

a6c5
,

2n + 1 = 7 : K7(ac)

a
+ 1

a2c
− 48

a4c3
+ 1920

a6c5
− 46080

a8c7
,

2n + 1 = 9 : −K9(ac)

a
+ 1

a2c
− 80

a4c3
+ 5760

a6c5
− 322560

a8c7
+ 10321920

a10c9
,

2n+1 = 11 : K11(ac)

a
+ 1

a2c
− 120

a4c3
+13440

a6c5
−1290240

a8c7
+92897280

a10c9
−3715891200

a12c11
.

For even order, Bessel functions
∫ ∞

0
J2n(cr)

r2+a2 dr, a, c > 0 take the form

2n = 0 : πI0(ac)

2a
− πL0(ac)

2a
,
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2n = 2 : c

3
− πI2(ac)

2a
+ πL2(ac)

2a
,

2n = 4 : c

15
+ πI4(ac)

2a
− πL2(ac)

2a
+ 3πL3(ac)

a2c
,

2n = 6 : a2c3

105
+ c

35
− πI6(ac)

2a
+ πL4(ac)

2a
− 5πL3(ac)

a2c
+ 40πL4(ac)

a3c2
,

2n = 8 : a2c3

63
+ c

63
+πI8(ac)

2a
−πL4(ac)

2a
+12πL5(ac)

a2c
−84πL4(ac)

a3c2
+840πL5(ac)

a4c3
.
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