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Abstract Cox proportional hazards model is considered. In Kukush et al. (2011), Journal of
Statistical Research, Vol. 45, No. 2, 77–94 simultaneous estimators λn(·) and βn of baseline
hazard rate λ(·) and regression parameter β are studied. The estimators maximize the objective
function that corrects the log-likelihood function for measurement errors and censoring. Pa-
rameter sets for λ(·) and β are convex compact sets in C[0, τ ] and R

k , respectively. In present
paper the asymptotic normality for βn and linear functionals of λn is shown. The results are
valid as well for a model without measurement errors. A way to compute the estimators is
discussed based on the fact that λn(·) is a linear spline.
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1 Introduction

We deal with Cox proportional hazards model where a lifetime T ≥ 0 has the follow-
ing intensity function

λ(t |X; λ, β) = λ(t) exp
(
βTX

)
, t ≥ 0. (1.1)
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Here we say that positive random variable ξ has intensity function λ̃(·) if

λ̃(t) = lim
h→0+

h−1P{t ≤ ξ < t + h| ξ ≥ t}, t ≥ 0.

In (1.1) covariate X is a random vector distributed in R
k , λ(·) ∈ Θλ ⊂ C[0, τ ]

is the baseline hazard function and β is a parameter from Θβ ⊂ R
k . We observe

only censored value Y := min{T ,C}, where censor C is distributed in [0, τ ]. Survival
function of C, GC(u) = 1−FC(u), is unknown but we know τ . Censorship indicator
Δ := I{T ≤C} is observed as well. X is not observed directly, instead a surrogate
data W = X + U is observed, where U has known and finite moment generating
function MU(β) := EeβTU . Here E stands for expectation. A couple (T ,X), censor C

and measurement error U are stochastically independent. We mention that recently
measurement error models become quite popular, e.g., in [9] an autoregressive model
with measurement error was studied.

Consider independent copies of the model (Xi, Ti, Ci, Yi,Δi), i = 1, . . . , n.
Based on (Yi,Δi,Wi), i = 1, . . . , n, we estimate true values of β and λ(·) that we
denote by β0 and λ0(·), respectively. The latter is estimated on [0, τ ] only.

There are a lot of papers on estimation of β0 and cumulative hazard Λ(t) =∫ t

0 λ(t) dt . In [1] general ideas are presented based on partial likelihood. Same model
but with measurement errors is considered in [4], where, based on Corrected Score
method, consistent and asymptotically normal estimators are constructed for regres-
sion parameter and cumulative hazard function. Another approach is proposed in [6]
where doubly censored data are considered without measurement error. Here cumu-
lative hazard is estimated, and strong consistency and asymptotic normality of max-
imum likelihood estimators are proven. However, sometimes it is necessary to know
the behaviour of baseline hazard function λ(·) itself, not cumulative hazard (see [10]).
Our model is presented in [2] and [5] where baseline hazard function is assumed to
belong to a parametric space while we consider λ(·) from a compact set of C[0, τ ].

If values of Xi were measured without measurement error, we could use Maxi-
mum Likelihood Estimator (MLE) which maximizes the log-likelihood function

Q̃n(λ, β) := 1

n

n∑
i=1

q̃ (Yi,Δi,Xi; λ, β),

where

q̃(Y,Δ,X; λ, β) = Δ
(
log λ(Y ) + βTX

) − eβTX

∫ Y

0
λ(u) du.

Since Xi is contaminated, we have to correct our objective function for measure-
ment error. Due to suggestion of Augustin [2] we construct a new objective function
q such that

E
[
q(Yi,Δi,Wi; λ, β)| Yi,Δi,Xi

] = q̃(Yi,Δi,Xi; λ, β) a.s.

Then the corrected log-likelihood function is

Qn(λ, β) := 1

n

n∑
i=1

q(Yi,Δi,Wi; λ, β), (1.2)
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where

q(Y,Δ,W ; λ, β) = Δ
(
log λ(Y ) + βTW

) − eβTW

MU(β)

∫ Y

0
λ(u) du. (1.3)

As an estimator of true parameters (λ0, β0), we use a couple (λn, βn) which max-
imizes (1.2).

Introduce further assumptions.

(i) Θλ = {f : [0, τ ] → R|f (t) ≥ a, ∀t ∈ [0, τ ], f (0) ≤ A, |f (t) − f (s)| ≤
L|t − s|, ∀t, s ∈ [0, τ ]}, where a > 0, A > a and L > 0 are fixed constants.

(ii) Θβ is a compact and convex set in R
k .

(iii) EU = 0 and for some ε > 0,

E
[
e2D‖U‖] < ∞ where D := max

β∈Θβ

‖β‖ + ε.

(iv) E[e2D‖X‖] < ∞ where D > 0 is defined in (iii).
(v) τ is right endpoint of the distribution of C, i.e., P{C > τ } = 0 and for all

ε > 0, P{C > τ − ε} > 0.
(vi) The covariance matrix of random vector X is positive definite.

(vii) β0 is an interior point of Θβ .
(viii) λ0 ∈ Θε

λ for some ε > 0, where Θε
λ := {f : [0, τ ] → R|f (t) ≥ a + ε, ∀t ∈

[0, τ ], f (0) ≤ A − ε, |f (t) − f (s)| ≤ (L − ε)|t − s|, ∀t, s ∈ [0, τ ]}.
(ix) P{C > 0} = 1.

Remark. Assumptions (i) to (ix) allow us to consider model without measurement
error. One just has to set Ui = 0 and MU(β) = 1. All results of the article are valid
for this case as well.

In [7] the strong consistency of (λn, βn) is proven and the rate of convergence is
presented. Our goal is to provide asymptotic normality for βn and λn. The paper is
organised as follows. Section 2 states the main results on the asymptotic normality.
Section 3 suggests the procedure for computation of the estimates. Section 4 proves
the stochastic boundedness results. Section 5 proves auxiliary results, Section 6 gives
the proof of the main result, and Section 7 concludes.

For a sequence of random variables {xn}, notation xn = Op(1) means that {xn} is
stochastically bounded. We assume that censor C has pdf fC (this is a technical as-
sumption that can be easily avoided). According to [7], Section 3, conditional density
of (Y,Δ) given X at point (λ0, β0) equals

f (y, δ|X) = f δ
T (y|X)G1−δ

T (y|X)f 1−δ
C Gδ

C(y), (1.4)

where fT is conditional pdf of T given X and GT is conditional survival function:

fT (t |X) = λ(t |X; λ0, β0) exp

(
−

∫ t

0
λ(s|X; λ0, β0) ds

)
,

GT (t |X) = exp

(
−

∫ t

0
λ(s|X; λ0, β0) ds

)
.
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Let Z be a normed linear space. For a function f : Z → R we denote f (n)(x0)

its n-th Fréchet derivative at a point x0 ∈ Z. f (n)(x0) is n-linear form and for
h1, . . . , hn ∈ Z we denote 〈f (n)(x0), (h1, . . . , hn)〉 the action of f (n)(x0). If h1 =
· · · = hn we simply write 〈f (n)(x0), (h1)

n〉 where it does not cause ambiguity. If a
functional F acts on a product space Z1 ×Z2 then elements of this space are denoted
as (h1, h2) ∈ Z1 × Z2 and 〈F, (h1, h2)〉 stands for the action of F on (h1, h2). For
x, y ∈ Z, the following set is called an interval that connects x and y

[x, y] = {
αx + (1 − α)y| α ∈ [0, 1]}.

2 Main result

We make some more notations. Let

a(u) = E
[
XeβT

0 XGT (u|X)
]
, b(u) = E

[
eβT

0 XGT (u|X)
]
,

p(u, x) = exp
(
βT

0 X
)
GT (u|X),

T (u) = E
[
XXTp(u, x)

]
E

[
p(u, x)

] − E
[
Xp(u, x)

]
E

[
XT p(u, x)

]
.

Denote

A = E
[
XXT exp

(
βT

0 X
) ∫ Y

0
λ0(u) du

]
, M =

∫ τ

0
T (u)K(u)GC(u) du,

where K(u) = λ0(u)
b(u)

. Also introduce a sequence of random vectors

ξn :=
n∑

i=1

ζi,

with i.i.d. summands

ζi = −Δia(Yi)

b(Yi)
+ exp(βT

0 Wi)

MU(β0)

∫ Yi

0
a(u)K(u) du + ∂q

∂β
(Yi,Δi,Wi ;β0, λ0).

Let Σβ = 4Cov(ζ1), m(ϕλ) = ∫ τ

0 ϕλ(u)a(u)GC(u) du, Σ2
ϕ = 4Var[〈q ′(Y,Δ,W ;

λ0, β0), ϕ〉] with ϕ = (ϕλ, ϕβ) ∈ C[0, τ ] × R
k .

Theorem 1. Assume conditions (i) to (ix). Then M is invertible and

√
n(βn − β0)

d→ Nk

(
0,M−1ΣβM−1). (2.1)

Moreover, for any Lipschitz continuous function f on [0, τ ],
√

n

∫ τ

0
(λn − λ0)(u)f (u)GC(u) du

d→ N
(
0, σ 2

ϕ (f )
)

(2.2)

where σ 2
ϕ (f ) = σ 2

ϕ with ϕ = (ϕλ, ϕβ), ϕβ = −A−1m(ϕλ), and ϕλ is a unique
solution to the Fredholm’s integral equation

ϕλ

K(u)
− aT(u)A−1m(ϕλ) = f (u). (2.3)
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Corollary 2. Let 0 < ε < τ . Assume that 1
GC

is Lipschitz continuous on [0, τ − ε].
Under conditions (i) to (ix), for any Lipschitz continuous function f on [0, τ ] with
support on [0, τ − ε],

√
n

∫ τ−ε

0
(λn − λ0)(u)f (u) du

d→ N
(
0, σ 2

ϕ (f )
)

(2.4)

where σ 2
ϕ (f ) = σ 2

ϕ with ϕ = (ϕλ, ϕβ), ϕβ = −A−1m(ϕλ), and ϕλ is a unique
solution to the Fredholm’s integral equation

ϕλ

K(u)
− aT(u)A−1m(ϕλ) = f (u)

GC(u)
.

Here by definition f (τ)
GC(τ)

= 0.

Note that the corollary immediately follows from the theorem after f is substi-
tuted by f

GC
.

3 Computation of estimators

Since Θλ is infinite-dimensional, computation of (λn, βn) is not a parametric problem
in general setting. We refer to the ideas of I.J. Schoenberg [11]. We will show that
maximum of (1.2) is attained on a linear spline with nodes located at points Yi , i =
1, . . . , n and some other points that can be calculated.

Let i1, . . . , in∈1, . . . , n be such a numbering that Yi1≤ · · · ≤Yin , i.e., (Yi1 , . . . , Yin)

is a variational series of (Y1, . . . , Yn). Alongside with (λn, βn) we consider (λn, βn),
where λn is the following function. We set λn(Yik ) = λ(Yik ), k = 1, . . . , n. For each
interval [Yik , Yik+1 ], k = 1, . . . , n−1, perform the next procedure. Draw straight lines

L1
ik
(t) = λ(Yik ) + L(Yik − t) (3.1)

and
L2

ik
(t) = λ(Yik+1) + L(t − Yik+1), (3.2)

where L is defined in (i).
Denote Bik the intersection of L1

ik
(t) and L2

ik
(t). Bi0 := 0, Bin := τ , Yi0 := 0,

Yin+1 := τ . We set

λn(t) =
{

max{L1
ik
(t), a} if t ∈ [Yik , Bik ],

max{L2
ik
(t), a} if t ∈ [Bik , Yik+1 ].

(3.3)

Note that λn ≥ λn because λn ∈ Θλ. Then∫ Yik+1

Yik

λn(u) du ≥
∫ Yik+1

Yik

λn(u) du.

Thus, one can easily see that

Qn(λn, βn) ≤ Qn(λn, βn)

implying λn = λn so that we conclude with the following statement.
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Theorem 3. Under conditions (i) and (ii), function λn that maximizes Qn is a linear
spline constructed in (3.3).

Using maximization in (3.3) makes computation of (λn, βn) inconvenient. Thus,
we propose to modify the estimators. As soon as condition (viii) is satisfied and esti-
mator (λn, βn) is strongly consistent, one can induce that eventually λ(Bik ) > a, and
thus, eventually there is no need in finding maximum in (3.3). Therefore, instead of
(λn, βn) we propose to consider a couple (̂λn, β̂n) with β̂n ∈ Θβ that maximizes Qn

under restrictions:

(1) λ̂n(0) ≤ A.
(2) λ̂n(Yik ) ≥ a, k = 1, . . . , n.
(3) λ̂n(Yik )+L(Yik −Yik+1)≤ λ̂n(Yik+1)≤ λ̂n(Yik )−L(Yik−Yik+1), k = 1, . . . , n−1.

(4) λ̂n(t) :=
{

L1
ik
(t) if t ∈ [Yik , Bik ],

L2
ik
(t) if t ∈ [Bik , Yik+1 ],

k = 1, . . . , n − 1.

(5) λ̂n(t) :=
{

L2
i0
(t) if t ∈ [0, Yi1 ],

L1
in
(t) if t ∈ [Yin, τ ].

Evaluating (̂λn, β̂n) is a parametric problem. We mention that eventually
(̂λn, β̂n) = (λn, βn). We summarise with the next statement.

Theorem 4. Assume conditions (i) to (ix). Then estimator (̂λn, β̂n) is strongly con-
sistent and statements of Theorem 1 and Corollary 2 hold true for that estimator.

4 Stochastic boundedness of transformed and normalized estimators

Theorem 5. Assume (i) to (vi). Then

4
√

n‖βn − β0‖ = Op(1),

√
n

∫ τ

0

(
λn(u) − λ0(u)

)2
GC(u) du = Op(1).

The proof is based on the three lemmas. Using integration by parts one can easily
prove the following.

Lemma 6. For all u ∈ [0, τ ]∫ τ

u

(
fC(y)GT (y|X) + fT (y|X)GC(y)

)
dy = GT (u|X)GC(u) =: G(u|X).

Crucial step of the proof of Theorem 5 is the following.

Lemma 7. There exists a closed bounded set A such that μX(A) := P(X ∈ A) > 0
and that the identity (vTx − c)IA(x) ≡ 0, for some v ∈ R

k, c ∈ R, implies v = 0
and c = 0.

Proof of Lemma 7. Denote by M the support of μX, so that M is minimal closed
set with μX(M) = μX(Rk). Since μX is not concentrated on a hyperplane due to
the condition (vi), there are at least k + 1 distinct points m1, . . . , mk+1 that belong
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to M and do not lie on a hyperplane. Consider a closed ball B(0, r) with radius
r > max{‖m1‖, . . . , ‖mk+1‖}. Now one can take A = M ∩ B(0, r) and make sure
that A has all desired properties.

Let An(ω) be a collection of assertions (here ω stands for elementary event). We
say that {An} hold eventually if for almost all ω there exists Nω such that for all
n > Nω, An(ω) holds.

Lemma 8. Let ηn, ξn be two sequences of random variables, ηn be stochastically
bounded, and eventually |ξn| ≤ |ηn|. Then ξn is stochastically bounded as well.

Proof of Theorem 5.
Step 1. Denote q∞(λ, β) = E[q (Y,Δ,W ;λ, β)] = E[q̃(Y,Δ,X ;λ, β)]. Let us

show that (q∞)′ exists for (λ, β) ∈ B and equals zero at the true point (λ0, β0), where
B is some open set in R

k × C[0, τ ] that contains Θβ × Θλ.
Using (iv) one can easily obtain that

∂q∞
∂β

(λ, β) = E
[
ΔX − X exp

(
βTX

) ∫ Y

0
λ(u) du

]
,〈

∂q∞
∂λ

(λ, β), h

〉
= E

[
Δh(Y )

λ(Y )
− exp

(
βTX

) ∫ Y

0
h(u) du

]
,

where h ∈ C[0, τ ]. Hence, (q∞)′ exists. According to [7], Section 3 q∞(λ, β) <

q∞(λ0, β0) for all (λ, β) �= (λ0, β0), (λ, β) ∈ B. Hence,

(q∞)′(λ0, β0) = 0.

In fact, condition (iv) implies that (q∞)′′ and (q∞)′′′ exist. Hence, third order
Taylor’s formula holds,

q∞(λn, βn) − q∞(λ0, β0) = 1

2

〈
(q∞)′′(λ0, β0), (λn − λ0, βn − β0)

2〉
+ 1

6

〈
(q∞)′′′(λ̃n, β̃n), (λn − λ0, βn − β0)

3〉, (4.1)

where (λ̃n, β̃n) belongs to interval [(λn, βn), (λ0, β0)].
Step 2. We transform (q∞)′′ and show that −(q∞)′′(λ0, β0) is a positive definite

operator. We have〈
∂2q∞(λ0, β0)

∂λ2
, (h1, h2)

〉
= −E

[
Δ

λ2
0(Y )

h1(Y )h2(Y )

]
,

∂2q∞
∂β2

(λ0, β0) = −E
[
XXT exp

(
βT

0 X
) ∫ Y

0
λ0(u) du

]
,〈

∂2q∞(λ0, β0)

∂λ∂β
, (hλ, hβ)

〉
= −E

[(
hT

βX
)

exp
(
βT

0 X
) ∫ Y

0
hλ(u) du

]
,

where h1, h2, hλ ∈ C[0, τ ], hβ ∈ R
k .
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We use (1.4) and Lemma 6 for further transformations:〈
∂2q∞(λ0, β0)

∂λ2
, (hλ, hλ)

〉
= −E

[
Δ

λ2
0(Y )

h2
λ(Y )

]
= E

(∫ τ

0

h2
λ(u)

λ2
0(u)

fT (u|X)GC(u) du

)
= E

(∫ τ

0

h2
λ(u)

λ2
0(u)

λ0(u) exp
(
βT

0 X
)

exp

(
−

∫ u

0
Λ(s|X; λ0, β0) ds

)
GC(u) du

)
= E

(∫ τ

0

h2
λ(u)

λ0(u)
exp

(
βT

0 X
)
GT (u|X)GC(u) du

)
. (4.2)

Next,〈
∂2q∞(λ0, β0)

∂β2
, (hβ, hβ)

〉
= −E

[(
hT

βX
)2 exp

(
βT

0 X
) ∫ Y

0
λ0(u) du

]
= −E

[(
hT

βX
)2 exp

(
βT

0 X
)(∫ τ

0

(∫ y

0
λ0(u) du fT (y|X)GC(y)

+
∫ y

0
λ0(u) du fC(y)GT (y|X)

)
dy

)]
= −E

[(
hT

βX
)2 exp

(
βT

0 X
)∫ τ

0
λ0(u)

∫ τ

u

(
fC(y)GT (y|X) + fT (y|X)GC(y)

)
dy du

]
= −E

[(
hT

βX
)2 exp

(
βT

0 X
) ∫ τ

0
λ0(u)GT (u|X)GC(u) du

]
. (4.3)

At last,〈
∂2q∞(λ0, β0)

∂λ∂β
, (hλ, hβ)

〉
= −E

[(
hT

βX
)

exp
(
βT

0 X
) ∫ Y

0
hλ(u) du

]
= −E

[(
hT

βX
)

exp
(
βT

0 X
) ∫ τ

0
hλ(u)

∫ τ

u

(
fC(y)GT (y|X) + fT (y|X)GC(y)

)
dy du

]
= −E

[(
hT

βX
)

exp
(
βT

0 X
) ∫ τ

0
hλ(u)GT (u|X)GC(u) du

]
. (4.4)

Hence, from (4.2) to (4.4) it follows that〈
(q∞)′′(λ0, β0), (hλ, hβ)2〉

= −E
[

exp
(
βT

0 X
) ∫ τ

0

((
hT

βX
)√

λ0(u)G(u|X) + hλ(u)

√
G(u|x)√
λ0(u)

)2

du

]
. (4.5)
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Now, condition (vi) implies that −(q∞)′′ is positive definite at (λ0, β0), i.e.,〈
(q∞)′′(λ0, β0), (hλ, hβ)2〉 = 0 ⇐⇒ (hλ, hβ) = (0, 0).

Indeed, if to assume that 〈(q∞)′′(λ0, β0), (hλ, hβ)2〉 = 0 and (hλ, hβ) �= (0, 0)

then (4.5) implies that hβ �= 0 and (hT
βX) = const a.s. We get a contradiction

with (vi).
Step 3. We show that there exist such C > 0 and δ > 0 that, whenever max{‖hβ‖2,∫ τ

0
h2

λ(u)G0(u)

Cλ0
du} > 0, it holds

E
[−〈(q̃)′′(Y,Δ,X ;λ0, β0), (hλ, hβ)2〉

max{‖hβ‖2,
∫ τ

0
h2

λ(u)G0(u)

Cλ0
du}

]
≥ δ. (4.6)

Note that G(u|X) is continuous in X. Denote G0(u) = minX∈A G(u|X), where
A is a set from Lemma 7. Note that G0(u) = G(u|X0) > 0, for all u ∈ [0, τ ) and
some X0.

Assume that ‖hβ‖2 ≥ ∫ τ

0
h2

λ(u)G0(u)

Cλ0
du. Jensen’s inequality and (4.5) yield

− 〈
(q∞)′′(λ0, β0), (hλ, hβ)2〉
≥ 1

τ
E

[
IX∈A exp

(
βT

0 X
)(∫ τ

0

(
hT

βX
)√

λ0(u)G0(u) + hλ(u)

√
G0(u)√
λ0(u)

du

)2]
= 1

τ
E

[
IX∈A exp

(
βT

0 X
)((

hT
βX

)∫ τ

0

√
λ0(u)G0(u)du +

∫ τ

0
hλ(u)

√
G0(u)√
λ0(u)

du

)2]
.

(4.7)

Denote

a0 = min
X∈A

1

τ
exp

(
βT

0 X
)
, a1 =

∫ τ

0

√
λ0(u)G0(u) du,

Kλ(hβ) =
∫ τ

0 hλ(u)
√

G0(u)√
λ0(u)

du

‖hβ‖ .

Inequality (4.7) implies that

E
[−〈(q̃)′′(Y,Δ,X ;λ0, β0), (hλ, hβ)2〉

max{‖hβ‖2,
∫ τ

0
h2

λ(u)G0(u)

Cλ0
du}

]
≥ a0E

[
IX∈A

((̂
hT

βX
)
a1 + Kλ

)2]
,

where ĥβ = hβ

‖hβ‖ . Fix T ∈ R. Equality

E
[
IX∈A

((̂
hT

βX
)
a1 + T

)2] = 0

implies that IX∈A((̂hT
βX) + T

a1
) = const a.s., which contradicts to the choice of A.

It is easy to see that for a fixed ĥβ , minimum of

E
[
IX∈A

((̂
hT

βX
)
a1 + T

)2]
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is attained at a unique point T = T (̂hβ,A). Moreover, T (̂hβ,A) is a continuous
function of ĥβ . Hence, we have

E
[−〈(q̃)′′(Y,Δ,X ;λ0, β0), (hλ, hβ)2〉

max{‖hβ‖2,
∫ τ

0
h2

λ(u)G0(u)

Cλ0
du}

]
≥ a0E

[
IX∈A

((̂
hT

βX
)
a1 + T (̂hβ,A)

)2]
> 0. (4.8)

Due to ‖ĥβ‖ = 1, the right hand side of (4.8) attains its minimum at some point
ĥβ0 . Now one can take

δ1 = a0E
[
IX∈A

((̂
hT

β0
X

)
a1 + T (̂hβ0 , A)

)2]
> 0.

Consider the second case, where inequality ‖hβ‖2 <
∫ τ

0
h2

λ(u)G0(u)

Cλ0(u)
du holds.

Transform right hand side of (4.5):

E
[

exp
(
βT

0 X
) ∫ τ

0

((
hT

βX
)√

λ0(u)G(u|X) + hλ(u)

√
G(u|x)√
λ0(u)

)2

du

]
≥ E

[
IX∈A exp

(
βT

0 X
)((

hT
βX

)2
∫ τ

0
λ0(u)G0(u) du + 2

∫ τ

0

(
hT

βX
)
hλ(u)G0(u) du

+
∫ τ

0
h2

λ(u)
G0(u)

λ0(u)
du

)]
.

Denote Φ = ∫ τ

0 h2
λ(u)

G0(u)
Cλ0(u)

du. Hence, the left hand side of (4.6) is transformed
to

E
[−〈(q̃)′′(Y,Δ,X ;λ0, β0), (hλ, hβ)2〉

Φ

]
≥ E

[
IX∈A exp

(
βT

0 X
)((

h̃T
βX

)2
a2 + 2

Φ

∫ τ

0

(
hβ

TX
)
hλ(u)G0(u) du + C

)]
,

where

a2 =
∫ τ

0
λ0(u)G(u|X) du, h̃β = hβ√∫ τ

0
h2

λ(u)G0(u)

Cλ0(u)
du

.

Jensen’s inequality implies

Φ1/2 ≥
√

1

τC

(∫ τ

0
|hλ(u)|

√
G0(u)

λ0(u)
du

)
.

Since
√

Φ > ‖hβ‖, G0(u) ∈ [0, 1] and λ0 is bounded away from 0, we have∣∣∣∣
∫ τ

0 (hβ
TX)hλ(u)G0(u) du

Φ

∣∣∣∣ ≤ ‖hβ‖√
Φ

‖X‖
∣∣∣∣τ 1/2

∫ τ

0 hλ(u)
√

G0(u) du∫ τ

0 |hλ(u)|
√

G0(u)
λ0(u)

du

∣∣∣∣√C

≤ √
C‖X‖D,
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for some constant D > 0 which depends only on τ and λ0. Since ‖h̃β‖ < 1, there
exist constants K1 > 0, K2 > 0 that satisfy

E
[−〈(q̃)′′(Y,Δ,X ;λ0, β0), (hλ, hβ)2〉

Φ

]
≥ τa0(−K1 − √

CK2 + C).

Choosing C large enough, we get (4.6).
Step 4. Now transform Taylor’s decomposition (4.1):

q∞(λn, βn) − q∞(λ0, β0)

= E
(

max

{
‖hβn‖2,

∫ τ

0

h2
λn

(u)G0(u)

Cλ0
du

}[
1

2

〈(q̃)′′(Y,Δ,X ;λ0, β0), (hλn, hβn)
2〉

max{‖hβn‖2,
∫ τ

0
h2

λn
(u)G0(u)

Cλ0
du}

+ 1

6

〈(q̃)′′′(Y,Δ,X ; λ̃n, β̃n), (hλn, hβn)
3〉

max{‖hβn‖2,
∫ τ

0
h2

λn
(u)G0(u)

Cλ0
du}

])
, (4.9)

where we denote hλn = λn−λ0 and hβn = βn−β0. Remember that GT (u|X) ∈ (0, 1]
for all X, so that G0(u) ≥ K3GC(u) for some K3 > 0. One can see that ∂3q∞

∂λ2∂β
= 0.

Using the same technique as in (4.2)–(4.4) and the assumptions, we get〈
∂3q∞(λ̃n, β̃n)

∂λ3
, (h1, h2, h3)

〉
= 1

2
E

[
Δ

λ̃3
n(Y )

h1(Y )h2(Y )h3(Y )

]
= 1

2
E

(∫ τ

0

h1(u)h2(u)h3(u)

λ̃2
n(u)

exp
(
β̃T

n X
)
GT (u|X)GC(u) du

)
≤ K4‖h1‖

∫ τ

0
h2(u)h3(u)G0(u) du, (4.10)〈

∂3q∞(λ̃n, β̃n)

∂β3
, hβ

〉
= −E

[(
hT

βX
)3 exp

(
β̃T

n X
) ∫ Y

0
λ̃n du

]
≤ K5‖hβ‖3, (4.11)〈

∂3q∞(λ̃n, β̃n)

∂λ∂β2
, (hλ, hβ, hβ)

〉
= −E

[(
hT

βX
)2 exp

(
β̃T

n X
) ∫ Y

0
hλ(u) du

]
≤ K6‖hβ‖2‖hλ‖ (4.12)

where K4 to K6 are positive constants. We note that all constants K3 to K6 depend
only on Θ = Θλ × Θβ . Kukush et al. [7] prove strong consistency of the estimator
(λn, βn), that is maxt∈[0,τ ] |λn(t) − λ0(t)| → 0 and βn → β0 a.s., as n → ∞. One
can conclude that

lim
n→∞ E

[ 〈(q̃)′′′(Y,Δ,X ; λ̃n, β̃n), (hλn, hβn)
3〉

max{‖hβn‖2,
∫ τ

0
h2

λn
(u)G0(u)

Cλ0
du}

]
= 0 a.s. (4.13)
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Step 5. Set Sn(λ, β) = n(Qn(λ, β) − q∞(λ, β)). Kukush et al. [7] prove that
under assumptions (i) to (vi) Sn(λ,β)√

n
converges in distribution in C(Θ) to a Gaussian

measure. Hence,

0 ≤ √
n(q∞(λ0, β0) − q∞(λn, βn)

≤ √
n
(
Qn(λn, βn) − q∞(λn, βn) − Qn(λ0, β0) + q∞(λ0, β0)

)
≤ 2

√
n sup

(λ,β)∈Θλ×Θβ

∣∣Qn(λ, β) − q∞(λ, β)
∣∣ = Op(1),

because q∞(λ, β) and Qn(λ, β) attain their maximums at (λ0, β0) and (λn, βn), re-
spectively.

Now, (4.9) yields

√
n max

{
‖hβn‖2,

∫ τ

0

h2
λ(u)G0(u)

Cλ0
du

}
E

([
1

2

〈(q̃)′′(Y,Δ,X ;λ0, β0), (hλn, hβn)
2〉

max{‖hβn‖2,
∫ τ

0
h2

λ(u)G0(u)

Cλ0
du}

+ 1

6

〈(q̃)′′′(Y,Δ,X ; λ̃n, β̃n), (hλn, hβn)
3〉

max{‖hβn‖2,
∫ τ

0
h2

λ(u)G0(u)

Cλ0
du}

])
= √

n
(
q∞(λ0, β0) − q∞(λn, βn)

) = Op(1).

Step 6. Equations (4.6), (4.9) and (4.13) imply that eventually

√
n max

{
‖hβn‖2,

∫ τ

0

h2
λ(u)G0(u)

Cλ0
du

}
<

√
n(q∞(λ0, β0) − q∞(λn, βn))

δ/3
.

Lemma 8 proves that
√

n max{‖hβn‖2,
∫ τ

0
h2

λn
(u)G0(u)

Cλ0
du} = Op(1). Hence the

first equation of Theorem 5 is proved:

√
n‖βn − β0‖2 = √

n‖hβn‖2 = Op(1).

Finally, G0(u) ≥ K3GC(u). Note that λ0 is bounded away from 0 on [0, τ ].
Hence √

n

∫ τ

0
h2

λn
(u)GC(u) du = Op(1).

Thus, Theorem 5 is proved.

5 Auxiliary results

We use the ideas of [3].
Let θn = (λn, βn), θ0 = (λ0, β0), Θ = Θλ × Θβ . Denote ϕ = (ϕλ, ϕβ) an

admissible shift such that there exists δ > 0 with θ0 ± δϕ ∈ Θ . We demand that
(vii)–(viii) hold. Note that ϕ can be a random element and depend on n. However,
‖ϕ‖ should be bounded from above a.s.
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Consider the function f (t) = Qn(θn + t (θ0 − θn ± δϕ)), 0 ≤ t ≤ 1. It is well-
defined (due to the convexity of Θ) and attains its maximum at point t = 0. Therefore,
〈Q′

n(θn), θ0 − θn ± δϕ〉 ≤ 0 and∣∣〈Q′
n(θn), ϕ

〉∣∣ ≤ 1

δ

〈
Q′

n(θn),Δθn

〉
,

where Δθn := θn − θ0.
Taylor’s expansion at point (λ0, β0) implies∣∣∣∣〈Q′

n(θ0), ϕ
〉 + 1

2

〈
Q′′

n(θ0), (Δθn, ϕ)
〉 + 1

6

〈
Q′′′

n (θ̃n),
(
Δθ2

n , ϕ
)〉∣∣∣∣

≤ 1

δ

(〈
Q′

n(θ0),Δθn

〉 + 1

2

〈
Q′′

n(θ0),Δθ2
n

〉 + 1

6

〈
Q′′′

n (θ̂n),Δθ3
n

〉)
, (5.1)

for some θ̂n and θ̃n from interval [θ0, θn].
Proposition 9. Under conditions (i) to (viii) for every admissible shift ϕ, one has that√

n〈Q′′
n(θ0), (Δθn, ϕ)〉 and

√
n〈q ′′∞(θ0), (Δθn, ϕ)〉 are stochastically bounded.

Relying on this proposition we will be able to show that
√

n‖βn − β0‖ and√
n

∫ τ

0 (λn − λ0)(u)GC(u) du are stochastically bounded and then prove the asymp-
totic normality of

√
n〈Q′′

n(θ0), (Δθn, ϕ)〉.
Denote Θ− = Θ − Θ . It is clear that it is compact and convex. Before proving

the proposition, we show the following.

Lemma 10. Under conditions (i) to (viii),
√

nQ′
n(θ0) and

√
n(Q′′

n(θ0) − q ′′∞(θ0))

converge in distribution in C(Θ−) and C(Θ2−), respectively. Moreover, for all θ =
(λ, β) ∈ Θ ,

√
n(

∂3Qn

∂λ3 (θ) − ∂3q∞
∂λ3 (θ)) converges in distribution in C(Θ3−).

Proof of Lemma 10. Here only convergence for
√

nQ′
n(θ0) will be shown, because

for
√

n(Q′′
n(θ0) − q ′′∞(θ0)) and

√
n(

∂3Qn

∂λ3 (θ) − ∂3q∞
∂λ3 (θ)) the proof is similar. We note

that q ′∞(θ0) = 0 and due to conditions (iii)–(iv) we have E[supβ∈Θβ
e2βTX‖X‖k] <

∞ and E[supβ∈Θβ
e2βTU‖U‖k] < ∞, for any k ∈ N.

For (λ, β) ∈ Θ− let

g(λ, β, Y,Δ,W) = 〈
q ′(Y,Δ,W ;λ0, β0), (λ, β)

〉
and

ρ
(
(λ1, β1), (λ2, β2)

) = sup
u∈[0,τ ]

|λ1(u) − λ2(u)| + ‖β1 − β2‖.

(Θ−, ρ) is a compact metric space. We denote by Lip(ρ) a subspace of Lipschitz
continuous functions on Θ− with respect to the metric ρ and by ‖ · ‖ρ the norm
induced by ρ, that is for some fixed point (λ∗, β∗) ∈ Θ− and for all l ∈ Lip(ρ) we
define:

‖l‖ρ := sup
(λ1,β1)�=(λ2,β2)

|l(λ1, β1) − l(λ2, β2)|
ρ((λ1, β1), (λ2, β2))

+ l
(
λ∗, β∗).

We apply Theorem 2 from [12]. It states that
√

nQ′
n(θ0) converges in distribution

in C(Θ−) under the following conditions:
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(1) P(g ∈ Lip(ρ)) = 1.
(2) E‖g‖2

ρ < ∞.

(3)
∫

0+ H
1
2 (Θ−, u) du < ∞, where H is ε-entropy on (Θ−, ρ), i.e. H(Θ−, u) =

log2 N(Θ−, u), where N is a minimal number of balls with diameter not ex-
ceeding 2ε that cover Θ−.

Let Θλ− = Θλ − Θλ and Θβ− = Θβ − Θβ , so that Θ− = Θλ− × Θβ−.
Consider Θλ− and Θβ− as compact metric spaces with uniform and Euclidean norm,
respectively. Then for N(Θ−, 2u) ≤ N(Θβ−, u)N(Θλ−, u), (3) is equivalent to

(3.1)
∫

0+ H
1
2 (Θλ−, u) du < ∞, and

(3.2)
∫

0+ H
1
2 (Θβ−, u) du < ∞.

Since Θβ− ⊂ R
k , we have N(Θβ−, u) < Cuk for some constant C > 0, and (3.2) is

fulfilled. Note that Θλ− can be considered as a set of Lipschitz continuous functions
that map compact connected space [0, τ ] into some interval in R. Lemma 1 from [8]
implies

H(Θλ−, u) ≥ 1 + H(Θλ−, 4u),

so that Θλ− is of “uniform type” (see [8]). According to Theorem 1 from [8] there
exists such constant C that

H(Θλ−, 4Lε) ≤ CN
([0, τ ], ε).

For the space R
1 we have that N([0, τ ], u) < C̃ 1

u
for some constant C̃. Hence (3.1)

holds.
To verify (1) and (2) note that

g(λ, β, Y,Δ,W) = Δλ(Y )

λ0(Y )
− eβT

0 W

MU(β0)

∫ Y

0
λ du + ΔβTW

+ βT (MU(β0)W − E(UeβT
0 U))eβT

0 W

M2
U(β0)

∫ Y

0
λ0 du,

and conditions (i)–(ii) imply

sup
(λ,β)∈Θ−

∥∥g′(λ, β, Y,Δ,W)
∥∥ < ∞,

where g′ is considered as a bilinear operator on C[0, τ ]×R
k . Hence, condition (1) is

fulfilled. Moreover, there exists such a constant K > 0 that

‖g(λ, β, Y,Δ,W)‖ρ < K
(
1 + ‖W‖ + eD‖W‖ + ‖W‖eD‖W‖)

and due to conditions (iii) and (iv), condition (2) is also satisfied. Thus, lemma is
proved.

Returning to inequality (5.1), because Δθn converges to zero a.s., one can con-
clude the following.
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(a)
√

n〈Q′
n(θ0), ϕ〉 = Op(1) and 〈√nQ′

n(θ0),Δθn〉 = op(1), where op(1) means
convergence to zero in probability.

(b)
√

n(
∂3Qn

∂λ3 (θ) − ∂3q∞
∂λ3 (θ)) converges in probability in C(Θ3−). Inequality (4.10)

implies that
√

n〈 ∂3q∞
∂λ3 (θ),(Δθ2

n , ϕ)〉 is stochastically bounded, so is
√

n〈 ∂3Qn

∂λ3 (θ),

(Δθ2
n , ϕ)〉.

(c)
√

n〈(Q′′
n(θ0) − q ′′∞(θ0)),Δθ2

n 〉 and
√

n〈(Q′′
n(θ0) − q ′′∞(θ0)), (Δθn, ϕ)〉 converge

to zero in probability. Note that 〈√nQ′′
n(θ0),Δθ2

n 〉 = Op(1) if and only if√
n〈q ′′∞(θ0),Δθ2

n 〉 = Op(1). The latter equality can be easily derived from The-
orem 5, formula (4.1) and convergence (4.13).

Proof of Proposition 9. To prove the first part of the proposition one has to show
that 〈

Q′′′
n (θ̂n),Δθ3

n

〉 = Op(1)√
n

(5.2)

and 〈
Q′′′

n (θ̃n),
(
Δθ2

n , ϕ
)〉 = Op(1)√

n
. (5.3)

It is clear that (5.3) yields (5.2). After a series of computations one can induce
that for some constants C1 > 0, C2 > 0∣∣∣∣〈∂3q(Y,Δ,W ;λ, β)

∂β3
, (hβ)3

〉∣∣∣∣ ≤ C1e
D‖W‖‖hβ‖3

∣∣∣∣〈∂3q(Y,Δ,W ;λ, β)

∂λ∂β2
, (hβ, hβ, hλ)

〉∣∣∣∣ ≤ C2e
D‖W‖‖hβ‖2‖hλ‖. (5.4)

Expectations of right hand sides of inequalities in (5.4) are finite. Together with√
n‖βn−β0‖2 = Op(1) and SLLN, this implies that 〈 ∂Q3

n(θ̃n)

∂β3 , (Δθ2
n , ϕ)〉 and 〈 ∂Q3

n(θ̃n)

∂β2∂λ
,

(Δθ2
n , ϕ)〉 are Op(1)√

n
. Noting that ∂Q3

n(θ̃n)

∂β∂λ2 = 0, one can conclude that the first part of
the proposition will be proven if one shows that〈

∂Q3
n(θ̃n)

∂λ3
,
(
Δθ2

n , ϕ
)〉 =

〈
∂Q3

n(λ̃n)

∂λ3
,
(
(λn − λ0), (λn − λ0), ϕλ

)〉
= 1

n

n∑
i=1

Δi

(λn − λ0)
2(Yi)ϕλ(Yi)

λ̃3
n(Yi)

= Op(1)√
n

. (5.5)

From the definition of admissible shifts, ϕλ belongs to Θ . Since λ̃n is bounded
away from zero, there is a constant C such that for the second summand we have∣∣∣∣〈∂Q3

n(θ̃n)

∂λ3
,
(
Δθ2

n , ϕ
)〉∣∣∣∣ ≤ C

∣∣∣∣1

n

n∑
i=1

Δi(λn − λ0)
2(Yi)

∣∣∣∣ = Op(1)√
n

,

where the last equality holds due to the conclusion (b). Thus, (5.5) holds. This com-
pletes the proof of the first part of the proposition. The second part is easily derived
from conclusion (c).
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Corollary 11.
√

n‖βn − β0‖ = Op(1),

√
n

∫ τ

0
(λn − λ0)(u)GC(u) du = Op(1).

Proof. Let hβ = βn − β0, hλ = λn − λ0. Take some admissible shift ϕ := (ϕλ, ϕβ).
For this shift one has

−〈
q ′′∞(θ0), (Δθn, ϕ)

〉 = E
[(

hβ
T
X

)(
ϕT

βX
)

exp
(
βT

0 X
) ∫ Y

0
λ0(u) du

]
+ E

[(
ϕβ

TX
)

exp
(
βT

0 X
) ∫ Y

0
hλ(u) du

]
+ E

[
Δ

λ2
0(Y )

hλ(Y )ϕλ(Y )

]
+ E

[(
hβ

TX
)

exp
(
βT

0 X
) ∫ Y

0
ϕλ(u) du

]
= Op

(
1√
n

)
. (5.6)

The idea is to find such ϕλ that

E
[(

ϕβ
TX

)
exp

(
βT

0 X
) ∫ Y

0
hλ(u) du

]
+ E

[
Δ

λ2
0(Y )

hλ(Y )ϕλ(Y )

]
= 0. (5.7)

Then after some calculations (using Lemma 6) one can see that (5.7) is equivalent
to ∫ τ

0
hλϕ

T
βa(u)GC(u) du +

∫ τ

0

hλ

λ0
ϕλb(u)GC(u) du = 0. (5.8)

One can take

ϕλ(u) := −ϕT
βa(u)

b(u)
λ0(u)

as a solution to (5.8). Since GT (u|X) is differentiable function of u, one can conclude
that ϕλ is an admissible shift for ‖ϕβ‖ small enough.

Equation (5.6) is now equivalent to∫ τ

0
hT

βT (u)ϕβ

λ0(u)GC(u)

b(u)
du = Op

(
1√
n

)
. (5.9)

Using Hölder’s inequality and condition (vi), one can easily see that T (u) is pos-

itive definite. Now let h̃β = βn−β0‖βn−β0‖ and take ϕβ = h̃β

C1
, where C1 > 0 such that

ϕ = (ϕλ, ϕβ) is an admissible shift. Then (5.6) can be transformed to

‖hβ‖
∫ τ

0
h̃T

βT (u)h̃β

λ0(u)GC(u)

b(u)
du = Op

(
1√
n

)
. (5.10)
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Since ‖h̃β‖ = 1/C1, left hand side of (5.10) is greater than δ‖hβ‖ for some δ > 0.
Using Lemma 8 the first part of the corollary is proved.

If now in (5.6) one takes ϕ = ( 1
C2

, 0) for large enough C2 > 0, then (5.6) takes
form

E
[

Δ

λ2
0(Y )

hλ(Y )
1

C2

]
+ E

[(
hβ

TX
)

exp
(
βT

0 X
) ∫ Y

0

1

C2
du

]
= Op

(
1√
n

)
.

Due to
√

n‖βn − β0‖ = Op(1), the latter equality implies

E
[

Δ

λ2
0(Y )

hλ(Y )
1

C2

]
= Op

(
1√
n

)
and the second part of the corollary holds.

We present the main result of this section.

Theorem 12. Under conditions (i) to (ix), for all admissible shifts the following con-
vergence in probability holds

√
n
〈
Q′

n(θ0), ϕ
〉 + 1

2

√
n
〈
q ′′∞(θ0), (Δθn, ϕ)

〉 P→ 0. (5.11)

Moreover, if ϕ is a non-random admissible shift then 〈Q′
n(θ0), ϕ〉 d→ N(0, σ 2

ϕ ), where

σ 2
ϕ = 4Var[〈q ′(Y,Δ,W, λ0, β0), ϕ〉], and

√
n
〈
Q′′

n(θ0), (Δθn, ϕ)
〉 d→ N

(
0, σ 2

ϕ

)
,

√
n
〈
q ′′∞(θ0), (Δθn, ϕ)

〉 d→ N
(
0, σ 2

ϕ

)
.

Proof. Using Corollary 11 and inequality (5.1), one can repeat the proof of Proposi-
tion 9 with a remark that stochastic boundedness should be changed for a convergence
to zero in probability. We use (4.2) to (4.4) to show

√
n〈q ′′∞(θ0),Δθ2

n 〉 = op(1). Thus,
the convergence (5.11) is proved. The rest of the proof is trivial.

6 Proof of Theorem 1

We assume that condition (ix) is satisfied. Thus A is positive definite and, conse-
quently, invertible. Since T (u) is positive definite, M is positive definite as well and
therefore, invertible.

Note that due to conditions (vii) and (viii), Theorem 12 is valid for all non-random
shifts ϕ ∈ R

k × Lip1([0, τ ]), where Lip1([0, τ ]) is a class of Lipschitz continuous
functions. Take the shift as follows: ϕ = (ϕT

βa(u)K(u), ϕβ), where ϕβ is a fixed

vector of Rk . For this shift one can rewrite 〈Q′
n(θ0), ϕ〉 as〈

Q′
n(θ0), ϕ

〉 = ϕT
β ξn.
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By the CLT applied to ξn one can see that the limit distribution of
√

nξn is in
fact Nk(0, 1

4Σβ). Note that we have already faced with the shift ϕ in Corollary 11. In
particular, (5.9) yields that 〈q ′′∞(θ0), (Δθn, ϕ)〉 can be rewritten as∫ τ

0
hT

βT (u)ϕβK(u)GC(u) du = hT
βMϕβ.

Theorem 12 and Cramér-Wold’s theorem yield that

hT
βM

d→ Nk(0,Σβ).

Since M is invertible, the convergence (2.1) is proved.
Now, for a fixed shift ϕλ take such ϕβ that

E
[(

hβ
T
X

)(
ϕT

βX
)

exp
(
βT

0 X
) ∫ Y

0
λ0(u) du

]
+ E

[(
hβ

TX
)

exp
(
βT

0 X
) ∫ Y

0
ϕλ(u) du

]
= hT

β

(
Aϕβ + m(ϕλ)

) = 0.

Hence, ϕβ = −A−1m(ϕλ). From (5.6) it follows that

− 〈
q ′′∞(θ0), (Δθn, ϕ)

〉
= E

[(
ϕβ

TX
)

exp
(
βT

0 X
) ∫ Y

0
hλ(u) du

]
+ E

[
Δ

λ2
0(Y )

hλ(Y )ϕλ(Y )

]
=

∫ τ

0
hλ(u)ϕT

βa(u)GC(u) du +
∫ τ

0
hλ(u)

ϕλ

K(u)
GC(u) du

=
∫ τ

0
hλ(u)

(
−a(u)Tϕβ + ϕλ

K(u)

)
GC(u) du.

In view of Theorem 12 and the remark at the beginning of the proof, in order to
show the convergence (2.4), one should show that the equation (2.3) has a Lipschitz
continuous solution ϕλ. But if ϕλ is a solution to (2.3) then

ϕλ(u) = K(u)f (u) + K(u)aT(u)C (6.1)

for some constant C ∈ R
k and thus, is Lipschitz continuous. After substitution (6.1)

in (2.3) we obtain

aT(u)

[
C −

∫ τ

0

(
f (u) + aT(u)C

)
A−1a(u)K(u)GC(u) du

]
= 0.

Let S = ∫ τ

0f (u)A−1a(u)K(u)GC(u) du and P(u)= E[XXTexp(βT
0 X)GT (u|X)].

We show that it is possible to choose C so that

C −
∫ τ

0
aT(u)CA−1a(u)K(u)GC(u) du = S.

After transposing both sides and multiplying by A, we have

CT
(

A −
∫ τ

0
a(u)aT(u)K(u)GC(u) du

)
= STA.
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Transformation of R := A − ∫ τ

0 a(u)aT(u)K(u)GC(u) du leads to

R =
∫ τ

0
λ0(u)

(
P(u) − a(u)aT(u)

b(u)

)
GC(u) du.

In the proof of Corollary 11 it was shown that P(u) − a(u)aT(u)
b(u)

= T (u)
b(u)

is a
positive definite matrix. Therefore, R is positive definite and invertible. Hence, (2.3)
has a unique solution and convergence (2.4) holds. This completes the proof.

7 Conclusion

Here we studied properties of the Corrected MLE (λn, βn) proposed by Kukush et al.
[7] in Cox proportional hazards model with measurement error. Asymptotic normality
was obtained for βn and integral functionals of λn. We also present estimator (̂λn, β̂n)

that inherits properties of (λn, βn) and transforms the maximization problem to a
parametric one.

In future we intend to provide simulations in this model.
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