
Modern Stochastics: Theory and Applications 4 (3) (2017) 199–217
DOI: 10.15559/17-VMSTA83

Asymptotic behavior of functionals of the solutions
to inhomogeneous Itô stochastic differential equations

with nonregular dependence on parameter

Grigorij Kulinich, Svitlana Kushnirenko∗

Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street,
01601 Kyiv, Ukraine

zag_mat@univ.kiev.ua (G. Kulinich), bksv@univ.kiev.ua (S. Kushnirenko)

Received: 29 May 2017, Revised: 6 August 2017, Accepted: 10 August 2017,
Published online: 22 September 2017

Abstract The asymptotic behavior, as T → ∞, of some functionals of the form IT (t) =
FT (ξT (t)) + ∫ t

0 gT (ξT (s)) dWT (s), t ≥ 0 is studied. Here ξT (t) is the solution to the time-
inhomogeneous Itô stochastic differential equation

dξT (t) = aT

(
t, ξT (t)

)
dt + dWT (t), t ≥ 0, ξT (0) = x0,

T > 0 is a parameter, aT (t, x), x ∈ R are measurable functions, |aT (t, x)| ≤ CT for all x ∈ R

and t ≥ 0, WT (t) are standard Wiener processes, FT (x), x ∈ R are continuous functions,
gT (x), x ∈ R are measurable locally bounded functions, and everything is real-valued. The
explicit form of the limiting processes for IT (t) is established under nonregular dependence of
aT (t, x) and gT (x) on the parameter T .
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1 Introduction

Consider the time-inhomogeneous Itô stochastic differential equation

dξT (t) = aT

(
t, ξT (t)

)
dt + dWT (t), t ≥ 0, ξT (0) = x0, (1)

where T > 0 is a parameter, aT (t, x), x ∈ R are real-valued measurable functions
such that |aT (t, x)| ≤ LT for all (t, x) and some family of constants LT > 0, and
WT = {WT (t), t ≥ 0}, T > 0 is a family of standard Wiener processes defined on a
complete probability space (Ω,�, P).

It is known from Theorem 4 in [12] that for any T > 0 and x0 ∈ R equation (1)
possesses a unique strong solution ξT = {ξT (t), t ≥ 0}.

In this paper, we study the weak convergence, as T → ∞, of the processes
IT (t) = FT (ξT (t)) + ∫ t

0 gT (ξT (s)) dWT (s), where ξT (t) is the solution to stochastic
differential equation (1), FT (x) is a family of continuous real-valued functions, gT (x)

is a family of measurable, locally bounded real-valued functions. All the results about
asymptotic behavior are obtained under the condition which provides certain proxim-
ity of the coefficients aT (t, x) of equation (1) to some measurable functions âT (x). In
such situation, the limit processes, obtained under condition T → ∞, are some func-
tionals of the limits of the solutions ξ̂T (t) to the homogeneous stochastic differential
equations

dξ̂T (t) = âT

(
ξ̂T (t)

)
dt + dWT (t). (2)

The present paper generalizes similar results from [8] for the unique strong so-
lutions ξ̂T to homogeneous stochastic differential equations (2) to the case for the
solutions ξT (t) to inhomogeneous equations (1). Some results about solutions ξ̂T to
homogeneous equations (2), which obtained in [8], have been extended to solutions
ξT to inhomogeneous equations (1). Under the certain proposed conditions, which
present a novelty in comparison with [8], we prove that the asymptotic behavior of
the solutions and some functionals of the solutions to inhomogeneous Itô stochastic
differential equations (1) is the same as that for the solutions to homogeneous Itô
stochastic differential equations (2). The present paper also complements results of
paper [9]. Moreover, we assume that the drift coefficient aT (t, x) in equation (1) can
have nonregular dependence on the parameter T . For example, the drift coefficient
aT (t, x) can tend, as T → ∞, to infinity at some points xk and at some points tk
as well, or it can have degeneracies of some other types. Such a nonregular depen-
dence on T of the coefficients in equation (1) appeared for the first time in [4] and
[5], where the limit behavior of the normalized unstable solution of Itô stochastic
differential equation, as t → ∞, was investigated for homogeneous equations. In
those papers, a special dependence of the coefficients aT (x) = √

T a(x
√

T ) on the
parameter T was considered with a(x) ∈ L1(R). The special dependence of the co-
efficients aT (t, x) = √

T a(tT , x
√

T ) on the parameter T was considered in [6] for
inhomogeneous stochastic differential equations (1).

A more detailed review of the known results in this area is presented, for example,
in [7] and [8].

The paper is organized as follows. In Section 2, we set the notations and formulate
basic definitions. Section 3 contains the statements of the main results. In Section 4,
they are proved. Auxiliary results are collected in Section 5. Section 6 gives examples.
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2 Main definitions

In what follows we denote by C,L,N,CN,LN any constants that do not depend on
T , x and t . To formulate and prove the main results we introduce the functions of the
form

fT (x) =
∫ x

0
exp

{
−2

∫ u

0
âT (v) dv

}
du, T > 0. (3)

Throughout the paper we use the following notations:

β
(1)
T (t) =

∫ t

0
gT

(
ξT (s)

)
ds, β

(2)
T (t) =

∫ t

0
gT

(
ξT (s)

)
dWT (s),

IT (t) = FT

(
ξT (t)

) +
∫ t

0
gT

(
ξT (s)

)
dWT (s),

where ξT and WT are related via equation (1), gT (x) is a family of measurable, locally
bounded real-valued functions, FT (x) is a family of continuous real-valued functions.

Definition 2.1. We say that a family of stochastic processes ζT = {ζT (t), t ≥ 0}
weakly converges, as T → ∞, to a process ζ = {ζ(t), t ≥ 0} if, for any L > 0,
the measures μT [0, L] generated by the processes ζT on the interval [0, L] weakly
converge to the measure μ[0, L] generated by the process ζ considered on the interval
[0, L].

To study the weak convergence, as T → ∞, of the processes IT (t)= FT (ξT (t))+∫ t

0 gT (ξT (s)) dWT (s), where ξT is the solution to stochastic differential equation (1),
we suppose additionally that the drift coefficients satisfy the following assumption:
there exists a family of measurable, locally bounded functions âT (x) such that for
any L > 0

lim
T →∞

∫ L

0
sup
x

∣∣aT (t, x) − âT (x)
∣∣ dt = 0. (A0)

Note, that due to condition (A0), some results about solutions ξ̂T to homoge-
neous equations (2), which are obtained in [8], have been extended to solutions ξT

to inhomogeneous equations (1). Therefore, by analogy to the paper [8], consider
equations (1) from the class K(GT ).

Definition 2.2. The class of equations of the form (1) will be denoted by K(GT ), if
there exist families of functions âT (x) and GT (x), x ∈ R, such that:

1) âT (x) are measurable locally bounded real-valued functions, satisfying condi-
tion (A0);

2) GT (x) have continuous derivatives G′
T (x) and locally integrable second deriva-

tives G′′
T (x) a.e. with respect to the Lebesgue measure such that, for all T > 0,

x ∈ R and t ≥ 0, for some constant C > 0 the following inequalities hold:

[
G′

T (x)aT (t, x) + 1

2
G′′

T (x)

]2

+ [
G′

T (x)
]2 ≤ C

[
1 + ∣∣GT (x)

∣∣2]
,∣∣GT (x0)

∣∣ ≤ C; (A1)
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3) there exist constants C > 0 and α > 0 such that, for all x ∈ R,

∣∣GT (x)
∣∣ ≥ C|x|α;

4) there exist a bounded function ψ(|x|) and a constant m ≥ 0 such that ψ(|x|) →
0 as |x| → 0 and, for all x ∈ R and T > 0 and for any measurable bounded set
B, the following inequality holds:∣∣∣∣f ′

T (x)

∫ x

0

χB(GT (u))

f ′
T (u)

du

∣∣∣∣ ≤ ψ
(
λ(B)

)[
1 + |x|m]

, (A2)

where χB(x) is the indicator function of a set B, λ(B) is the Lebesgue measure
of B, f ′

T (x) is the derivative of the function fT (x) defined by equality (3).

Assume that, for certain locally bounded functions qT (x) and any constant N > 0,
the following condition holds:

lim
T →∞ sup

|x|≤N

∣∣∣∣f ′
T (x)

∫ x

0

qT (v)

f ′
T (v)

dv

∣∣∣∣ = 0. (A3)

3 Statement of the main results

We are in position to obtain the main result (Theorem 3.1) concerning the weak com-
pactness of stochastic processes ζT = {ζT (t) = GT (ξT (t)), t ≥ 0}, and use it in
further investigation of asymptotic behavior of the solutions (Theorem 3.2) and some
functionals of the solutions (Theorems 3.3–3.7) to inhomogeneous Itô stochastic dif-
ferential equations (1).

Theorem 3.1. Let ξT be a solution to equation (1) and let there exist a family of
continuous functions GT (x), x ∈ R for which the derivative G′

T (x) is continuous and
the second derivative G′′

T (x) exists a.e. with respect to the Lebesgue measure and is
locally integrable. Let the functions GT (x) satisfy assumption (A1), for all T > 0,
t ≥ 0, x ∈ R. Then the family of the processes ζT = {ζT (t) = GT (ξT (t)), t ≥ 0} is
weakly compact.

Theorem 3.2. Let ξT be a solution to equation (1) from the class K(GT ) and
GT (x0) → y0, as T → ∞. Assume that there exist measurable locally bounded
functions a0(x) and σ0(x) such that:

1) the functions

q
(1)
T (x) = G′

T (x)âT (x) + 1

2
G′′

T (x) − a0
(
GT (x)

)
,

q
(2)
T (x) = [

G′
T (x)

]2 − σ 2
0

(
GT (x)

)
,

satisfy assumption (A3);
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2) the Itô equation

ζ(t) = y0 +
∫ t

0
a0

(
ζ(s)

)
ds +

∫ t

0
σ0

(
ζ(s)

)
dŴ(s) (4)

has a unique weak solution (ζ, Ŵ ).

Then the stochastic processes ζT = GT (ξT (t)) weakly converge, as T → ∞, to the
solution ζ to equation (4).

Theorem 3.3. Let ξT be a solution to equation (1) from the class K(GT ) and let
assumptions of Theorem 3.2 hold. Assume that for measurable and locally bounded
functions gT (x) there exists measurable and locally bounded function g0(x) such that
the function

qT (x) = gT (x) − g0
(
GT (x)

)
satisfies assumption (A3). Then the stochastic processes β

(1)
T (t) = ∫ t

0 gT (ξT (s)) ds

weakly converge, as T → ∞, to the process

β(1)(t) =
∫ t

0
g0

(
ζ(s)

)
ds,

where ζ is a solution to equation (4).

Theorem 3.4. Let ξT be a solution to equation (1) from the class K(GT ), and let the
assumptions of Theorem 3.2 hold. Assume that, for measurable and locally bounded
functions gT (x), there exists a measurable locally bounded function g0(x) such that∣∣∣∣f ′

T (x)

∫ x

0

gT (v)

f ′
T (v)

dv

∣∣∣∣χ|x|≤N ≤ CN,

lim
T →∞ sup

|x|≤N

∣∣∣∣f ′
T (x)

∫ x

0

gT (v)

f ′
T (v)

dv − g0
(
GT (x)

)
G′

T (x)

∣∣∣∣ = 0 (A4)

for all N > 0. Then the stochastic processes β
(1)
T (t) = ∫ t

0 gT (ξT (s)) ds weakly con-
verge, as T → ∞, to the process

β̃(1)(t) = 2

(∫ ζ(t)

y0

g0(x) dx −
∫ t

0
g0

(
ζ(s)

)
σ0

(
ζ(s)

)
dŴ(s)

)
,

where (ζ, Ŵ ) is a solution to equation (4).

Theorem 3.5. Let ξT be a solution to equation (1) from the class K(GT ), and let the
assumptions of Theorem 3.2 hold. Suppose that the functions âT (x) satisfy assump-
tion (A3). Assume that, for measurable and locally bounded functions gT (x), there
exist two constants c0 and b0 such that for all N > 0∣∣∣∣f ′

T (x)

∫ x

0

gT (v)

f ′
T (v)

dv

∣∣∣∣χ|x|≤N ≤ CN,

lim
T →∞ sup

|x|≤N

∣∣∣∣
∫ x

0

[
f ′

T (u)

∫ u

0

gT (v)

f ′
T (v)

dv − c0

]
du

∣∣∣∣ = 0,
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and the functions

QT (x) =
[
f ′

T (x)

∫ x

0

gT (v)

f ′
T (v)

dv − c0

]2

− b2
0

satisfy assumption (A3). Then the stochastic processes

β
(1)
T (t) =

∫ t

0
gT

(
ξT (s)

)
ds

weakly converge, as T → ∞, to the process 2b0W(t), where {W(t), t ≥ 0} is a
Wiener process.

Theorem 3.6. Let ξT be a solution to equation (1) from the class K(GT ) and let
assumptions of Theorem 3.2 hold. Assume that, for measurable and locally bounded
functions gT (x), there exists a measurable locally bounded function g0(x) such that
the function

qT (x) = [
gT (x) − g0

(
GT (x)

)
G′

T (x)
]2

satisfies assumption (A3). Then the stochastic processes

β
(2)
T (t) =

∫ t

0
gT

(
ξT (s)

)
dWT (s),

where ξT and WT are related via equation (1), weakly converge, as T → ∞, to the
process

β(2)(t) =
∫ t

0
g0

(
ζ(s)

)
σ0

(
ζ(s)

)
dŴ(s),

where (ζ, Ŵ ) is a solution to equation (4).

Theorem 3.7. Let ξT and WT be related via equation (1) from the class K(GT ) and
let the assumptions of Theorem 3.2 hold. Assume that, for continuous functions FT (x)

and locally bounded measurable functions gT (x), there exist a continuous function
F0(x) and locally bounded measurable function g0(x) such that, for all N > 0

lim
T →∞ sup

|x|≤N

∣∣FT (x) − F0
(
GT (x)

)∣∣ = 0,

and let the functions gT (x) and g0(x) satisfy the assumptions of Theorem 3.6. Then
the stochastic processes

IT (t) = FT

(
ξT (t)

) +
∫ t

0
gT

(
ξT (s)

)
dWT (s)

weakly converge, as T → ∞, to the process

I0(t) = F0
(
ζ(t)

) +
∫ t

0
g0

(
ζ(s)

)
σ0

(
ζ(s)

)
dŴ(s),

where (ζ, Ŵ ) is a solution to equation (4).



Asymptotic behavior of functionals 205

4 Proof of the main results

In the proofs of theorems, which are performed similarly to the proofs of the corre-
sponding theorems in [8], we emphasize the differences associated with inhomoge-
neous equations. The proof of the Theorem 3.2 is given for a better understanding of
the brief proofs of the other theorems.

Proof of Theorem 3.1. The functions GT (x) have continuous derivatives G′
T (x) for

all T > 0, their second derivatives G′′
T (x) exist a.e. with respect to the Lebesgue

measure and are locally integrable. Therefore (see [3], Chap. II, §10), we can apply
the Itô formula to the process ζT (t) = GT (ξT (t)), and with probability one, for all
t ≥ 0, we obtain

ζT (t) = GT (x0) +
∫ t

0
LT

(
ξT (s)

)
ds +

∫ t

0
G′

T

(
ξT (s)

)
dWT (s), (5)

where

LT (x) = G′
T (x)aT (t, x) + 1

2
G′′

T (x).

Let

χN(t) =
{

1, sup0≤s≤t |ζT (s)| ≤ N,

0, sup0≤s≤t |ζT (s)| > N.

It is clear that for s ≤ t we have χN(t)χN(s) = χN(t) with probability one. Thus,
according to (5), the following equality holds with probability one:

ζT (t)χN(t) = ζT (0)χN(t) + χN(t)

∫ t

0
LT

(
ξT (s)

)
χN(s) ds

+ χN(t)

∫ t

0
G′

T

(
ξT (s)

)
χN(s) dWT (s). (6)

Hence, using condition (A1) and the properties of stochastic integrals, we obtain
that

E ζ 2
T (t)χN(t) ≤ 3

[
E ζ 2

T (0)χN(t) + E
(∫ t

0
LT

(
ξT (s)

)
χN(s) ds

)2

+ E
(∫ t

0
G′

T

(
ξT (s)

)
χN(s) dWT (s)

)2]

≤ 3

[
E ζ 2

T (0)χN(t) + t

∫ t

0
E L2

T

(
ξT (s)

)
χN(s) ds

+
∫ t

0
E

[
G′

T

(
ξT (s)

)]2
χN(s) ds

]

≤ 3

[
C + t

∫ t

0
C

[
1 + E ζ 2

T (s)χN(s)
]
ds

+ C

∫ t

0

[
1 + E ζ 2

T (s)χN(s)
]
ds

]

≤ C
(1)
L + C

(2)
L

∫ t

0
E ζ 2

T (s)χN(s) ds, (7)
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where C
(1)
L = 3C(1 + t + t2), C

(2)
L = 3C(1 + t), C > 0 is a constant from condi-

tion (A1), 0 ≤ t ≤ L.
Using the Gronwall–Bellman inequality, we conclude that there exists a constant

KL, which is independent of T , and for 0 ≤ t ≤ L

E ζ 2
T (t)χN(t) ≤ KL.

Let N ↑ ∞, then ζ 2
T (t)χN(t) ↑ ζ 2

T (t), and we get the inequality

sup
0≤t≤L

E ζ 2
T (t) ≤ KL. (8)

Similarly to (7), using (5) and the inequality

E sup
0≤t≤L

[∫ t

0
G′

T

(
ξT (s)

)
dWT (s)

]2

≤ 4
∫ L

0
E

[
G′

T

(
ξT (s)

)]2
ds,

we conclude that

E sup
0≤t≤L

∣∣ζT (t)
∣∣2 ≤ 3

[
G2

T (x0) + L

∫ L

0
C

[
1 + E ζ 2

T (s)
]
ds +

∫ L

0
C

[
1 + E ζ 2

T (s)
]
ds

]

≤ C̃
(1)
L + C̃

(2)
L

∫ L

0
E

[
ζT (s)

]2
ds.

Therefore, considering (8), we obtain the inequality

E sup
0≤t≤L

∣∣ζT (t)
∣∣2 ≤ K̃L (9)

for all L > 0, where the constants K̃L are independent of T .
Using the inequalities for martingales and for stochastic integrals (see [2], Part I,

§3, Theorem 6), we obtain that

E sup
0≤t≤L

∣∣∣∣
∫ t

0
G′

T

(
ξT (s)

)
χN(s) dWT (s)

∣∣∣∣
2m

≤
(

2m

2m − 1

)2m

E

∣∣∣∣
∫ L

0
G′

T

(
ξT (s)

)
χN(s) dWT (s)

∣∣∣∣
2m

≤
(

2m

2m − 1

)2m[
m(2m − 1)

]m−1
Lm−1

∫ L

0
E

[
G′

T

(
ξT (s)

)]2m
χN(s) ds,

for any natural number m. Therefore, similarly to (9) we have inequality

E sup
0≤t≤L

∣∣ζT (t)
∣∣2m ≤ KLm. (10)

Furthermore, for all α > 0 there exists m ∈ N such that α ≤ 2m and, for random
variable η, we have

E |η|α ≤ 1 + E |η|2m.
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The last inequality together with (10) implies that

E sup
0≤t≤L

∣∣ζT (t)
∣∣α ≤ KLα (11)

for all α > 0 and L > 0, where the constants KLα are independent of T .
Since for t1 < t2 ≤ L

E
[
ζT (t2) − ζT (t1)

]4

≤ 8

[
E

( ∫ t2

t1

LT

(
ξT (s)

)
ds

)4

+ E
( ∫ t2

t1

G′
T

(
ξT (s)

)
dWT (s)

)4]

≤ 8

[
(t2 − t1)

3
∫ t2

t1

E
∣∣LT

(
ξT (s)

)∣∣4
ds + 36(t2 − t1)

∫ t2

t1

E
[
G′

T

(
ξT (s)

)]4
ds

]
,

considering condition (A1) and inequality (11), we get

E
[
ζT (t2) − ζT (t1)

]4 ≤ CL|t2 − t1|2, (12)

where the constants CL are independent of T .
According to (8) and (12), we have convergences

lim
N→∞ lim

T →∞ sup
0≤t≤L

P
{∣∣ζT (t)

∣∣ > N
} = 0,

lim
h→0

lim
T →∞ sup

|t1−t2|≤h
ti≤L

P
{∣∣ζT (t2) − ζT (t1)

∣∣ > ε
} = 0 (13)

for any L > 0, ε > 0.
It means that we can apply Skorokhod’s convergent subsequence principle (see

[11], Chapter I, §6) for the processes ζT (t) for all 0 ≤ t ≤ L. According to this prin-
ciple, given an arbitrary sequence T ′

n → ∞, we can choose a subsequence Tn → ∞,
a probability space (Ω̃, �̃, P̃), and stochastic processes ζ̃Tn(t), ζ(t) defined on this
space such that their finite-dimensional distributions coincide with those of the pro-

cesses ζTn(t), and, moreover, ζ̃Tn(t)
P̃→ ζ(t), as Tn → ∞, for all 0 ≤ t ≤ L. The

processes ζ̃Tn(t) and ζ(t) can be considered separable.
Using (12), we have

E
[
ζ̃Tn(t2) − ζ̃Tn(t1)

]4 ≤ CL|t2 − t1|2

for all 0 ≤ t1 ≤ t2 ≤ L.
By Fatou’s lemma,

E
[
ζ(t2) − ζ(t1)

]4 ≤ CL|t2 − t1|2.

Thus, the processes ζ̃Tn(t) and ζ(t) are continuous with probability one. We have
that finite-dimensional distributions of the processes ζ̃Tn(t) converge, as Tn → ∞,
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to the correspondent finite-dimensional distributions of the process ζ(t). For a weak
convergence of the processes ζTn(t) it is sufficient (see [1], Chapter IX, §2) to prove

lim
h→0

lim
Tn→∞ P

{
sup

|t1−t2|≤h
ti≤L

∣∣ζTn(t2) − ζTn(t1)
∣∣ > ε

}
= 0 (14)

for any L > 0, ε > 0.
Due to inequalities (see [1], Chapter IX, §3)

P
{

sup
|t1−t2|≤h

ti≤L

∣∣ζTn(t2) − ζTn(t1)
∣∣ > ε

}

≤
∑
kh≤L

P
{

sup
kh≤t≤(k+1)h

∣∣ζTn(t) − ζTn(kh)
∣∣ >

ε

4

}

≤
(

4

ε

)4

8
∑
kh≤L

{
E sup

kh≤t≤(k+1)h

( ∫ t

kh

LTn

(
ξT (s)

)
ds

)4

+ E sup
kh≤t≤(k+1)h

( ∫ t

kh

G′
Tn

(
ξT (s)

)
dWT (s)

)4}
≤

(
4

ε

)4

KL

∑
kh≤L

(
h4 + h2),

where KL are independent of Tn, we obtain (14). The proof of Theorem 3.1 is com-
plete.

Proof of Theorem 3.2. Rewrite equality (5) as

ζT (t) = GT (x0) +
∫ t

0
a0

(
ζT (s)

)
ds + ηT (t) + α

(0)
T (t) + α

(1)
T (t), (15)

where

ηT (t) =
∫ t

0
G′

T

(
ξT (s)

)
dWT (s),

α
(0)
T (t) =

∫ t

0
G′

T

(
ξT (s)

)

aT (s) ds, 
aT (s) = aT

(
s, ξT (s)

) − âT

(
ξT (s)

)
,

α
(1)
T (t) =

∫ t

0
q

(1)
T

(
ξT (s)

)
ds, q

(1)
T (x) = G′

T (x)âT (x) + 1

2
G′′

T (x) − a0
(
GT (x)

)
.

The conditions (A0) and (A1), together with inequality (11), imply that

sup
0≤t≤L

∣∣α(0)
T (t)

∣∣ ≤
∫ L

0

∣∣G′
T

(
ξT (s)

)∣∣∣∣
aT (s)
∣∣ ds

≤
[
C

(
1 + sup

0≤s≤L

∣∣ζT (s)
∣∣2

)] 1
2
∫ L

0
sup
x

∣∣aT (s, x) − âT (x)
∣∣ ds

P→ 0,

(16)

as T → ∞ for any L > 0.
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The functions q
(1)
T (x) satisfy conditions of Lemma 5.2. Thus, for any L > 0

sup
0≤t≤L

∣∣α(1)
T (t)

∣∣ P→ 0, (17)

as T → ∞.
It is clear that ηT (t) is a family of continuous martingales with quadratic charac-

teristics

〈ηT 〉(t) =
∫ t

0

[
G′

T

(
ξT (s)

)]2
ds =

∫ t

0
σ 2

0

(
ζT (s)

)
ds + α

(2)
T (t), (18)

where

α
(2)
T (t) =

∫ t

0
q

(2)
T

(
ξT (s)

)
ds, q

(2)
T (x) = (

G′
T (x)

)2 − σ 2
0

(
GT (x)

)
.

The functions q
(2)
T (x) satisfy conditions of Lemma 5.2. Thus, for any L > 0

sup
0≤t≤L

∣∣α(2)
T (t)

∣∣ P→ 0, (19)

as T → ∞.
According to Theorem 3.1, the family of the processes ζT (t) is weakly compact.

It is easy to see that compactness conditions (14) are fulfilled for the processes ηT (t).
Using convergences (16), (17), (19), we have that relations (14) hold for the processes
α

(k)
T (t), k = 0, 1, 2 as well. It means that we can apply Skorokhod’s convergent

subsequence principle (see [11], Chapter I, §6) for the processes

(
ζT (t), ηT (t), α

(k)
T (t), k = 0, 1, 2

)
.

According to this principle, given an arbitrary sequence T ′
n → ∞, we can choose

a subsequence Tn → ∞, a probability space (Ω̃, �̃, P̃), and stochastic processes

(
ζ̃Tn(t), η̃Tn(t), α̃

(k)
Tn

(t), k = 0, 1, 2
)

defined on this space such that their finite-dimensional distributions coincide with
those of the processes

(
ζTn(t), ηTn(t), α

(k)
Tn

(t), k = 0, 1, 2
)
,

and, moreover,

ζ̃Tn(t)
P̃→ ζ̃ (t), η̃Tn(t)

P̃→ η̃(t), α̃
(k)
Tn

(t)
P̃→ α̃(k)(t), k = 0, 1, 2,

as Tn → ∞, for all 0 ≤ t ≤ L, where ζ̃ (t), η̃(t), α̃(k)(t), k = 0, 1, 2 are some
stochastic processes.
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Evidently, relations (16)–(19) imply that α̃(k)(t) ≡ 0, k = 0, 1, 2 a.s. According
to (12), the processes ζ̃ (t) and η̃(t) are continuous with probability one. Moreover,
applying Lemma 5.3 together with equalities (15) and (18), we obtain that

ζ̃Tn(t) = GTn(x0) +
∫ t

0
a0

(
ζ̃Tn(s)

)
ds + α̃

(0)
Tn

(t) + α̃
(1)
Tn

(t) + η̃Tn(t), (20)

〈η̃Tn〉(t) =
∫ t

0
σ 2

0

(
ζ̃Tn(s)

)
ds + α̃

(2)
Tn

(t),

where

ζ̃Tn(t)
P̃→ ζ̃ (t), η̃Tn(t)

P̃→ η̃(t), sup0≤t≤L

∣∣α̃(k)
Tn

(t)
∣∣ P̃→ 0, k = 0, 1, 2,

as Tn → ∞.
An analogue of convergence (14) holds for the processes ζ̃Tn(t) and η̃Tn(t). There-

fore, according to the well-known result of Prokhorov (Lemma 1.11 in [10]), we con-
clude that for any L > 0

sup
0≤t≤L

∣∣ζ̃Tn(t) − ζ̃ (t)
∣∣ P̃→ 0, sup

0≤t≤L

∣∣η̃Tn(t) − η̃(t)
∣∣ P̃→ 0, (21)

as Tn → ∞.
According to Lemma 5.4, we can pass to the limit in (20) and obtain

ζ̃ (t) = y0 +
∫ t

0
a0

(
ζ̃ (s)

)
ds + η̃(t),

where η̃(t) is the almost surely continuous martingale with the quadratic characteris-
tic

〈η̃〉(t) =
∫ t

0
σ 2

0

(
ζ̃ (s)

)
ds.

Now, it is well known, that the latter representation provides the existence of a
Wiener process Ŵ (t) such that

η̃(t) =
∫ t

0
σ0

(
ζ̃ (s)

)
dŴ(s).

Thus, the process (ζ̃ , Ŵ ) satisfies equation (4), and the processes ζ̃Tn(t) weakly
converge, as Tn → ∞, to the process ζ̃ . Since the sequence T

′
n → ∞ is arbitrary

and since a solution to equation (4) is weakly unique, the proof of the Theorem 3.2 is
complete.

The proof of Theorems 3.3–3.4, 3.6–3.7 is performed similarly to the proof of the
corresponding theorems in [8] with some differences that we discuss below.

Remark 4.1. The proof of Theorem 3.4 differs from the proof of Theorem 2.3 in
[8] by using other representation for the functional β

(1)
T (t) = ∫ t

0 gT (ξT (s)) ds. In this
case we have

β
(1)
T (t) = 2

∫ ζT (t)

GT (x0)

g0(u) du − 2
∫ t

0
g0

(
ζT (s)

)
dηT (s) + γ

(1)
T (t) − γ

(2)
T (t) − γ

(0)
T (t),
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where

γ
(1)
T (t) =

∫ ξT (t)

x0

q̂T (u) du, γ
(2)
T (t) =

∫ t

0
q̂T

(
ξT (s)

)
dWT (s),

γ
(0)
T (t) =

∫ t

0
Φ ′

T

(
ξT (s)

)[
aT

(
s, ξT (s)

) − âT

(
ξT (s)

)]
ds,

ΦT (x) = 2
∫ x

0
f ′

T (u)

(∫ u

0

gT (v)

f ′
T (v)

dv

)
du,

q̂T (x) = Φ ′
T (x) − 2g0

(
GT (x)

)
G′

T (x),

f ′
T (x) is the derivative of the function fT (x) defined by equality (3).

The latter representation differs from the corresponding representation in [8] by
the term γ

(0)
T (t). For any constants ε > 0, N > 0 and L > 0, we have the inequalities

P
{

sup
0≤t≤L

∣∣γ (0)
T (t)

∣∣ > ε
}

≤ PNT + 2

ε

∫ L

0
E

∣∣Φ ′
T

(
ξT (s)

)∣∣
× ∣∣aT

(
s, ξT (s)

) − âT

(
ξT (s)

)∣∣χ|ξT (s)|≤N ds

≤ PNT + 2

ε
CN

∫ L

0
sup
x

[
aT (s, x) − âT (x)

]
ds,

where PNT = P{sup0≤t≤L |ξT (t)| > N}. Using condition 3) from Definition 2.2 and
inequality (11), we obtain the convergence limN→∞ limT →∞ PNT = 0. Using the
assumptions of Theorem 3.4, we conclude that

sup
0≤t≤L

∣∣γ (0)
T (t)

∣∣ P→ 0 (22)

for any L > 0, as T → ∞. The rest of the proof of Theorem 3.4 is the same as that
of Theorem 2.3 in [8].

The proofs of Theorem 3.3 and Theorems 3.6–3.7 are literally the same as those
of Theorem 2.2 and Theorems 2.4–2.5 from [8].

Proof of Theorem 3.5. For the functional β
(1)
T (t) = ∫ t

0 gT (ξT (s)) ds, with probabil-
ity one, for all t ≥ 0, we have the representation

β
(1)
T (t) = 2c0

∫ t

0 âT (ξT (s)) ds + γT (t) − η
(1)
T (t) − γ

(0)
T (t) + γ

(3)
T (t),

where

γT (t) = 2
∫ ξT (t)

x0

[
f ′

T (u)

∫ u

0

gT (v)

f ′
T (v)

dv − c0

]
du,

η
(1)
T (t) =

∫ t

0

[
Φ ′

T

(
ξT (s)

) − 2c0
]
dWT (s),

γ
(3)
T (t) = 2c0

∫ t

0

[
aT

(
s, ξT (s)

) − âT

(
ξT (s)

)]
ds,

γ
(0)
T (t) and ΦT (x) are defined in Remark 4.1.
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The functions âT (x) satisfy condition (A3). Thus, using Lemma 5.2, we conclude
that for any L > 0

sup
0≤t≤L

∣∣∣∣
∫ t

0
âT

(
ξT (s)

)
ds

∣∣∣∣ P→ 0,

as T → ∞.
For any constants ε > 0, N > 0 and L > 0, we have the inequalities

P
{

sup
0≤t≤L

∣∣γT (t)
∣∣ > ε

}
≤ PNT + 1

ε
E sup

0≤t≤L

∣∣∣∣
∫ ξT (t)

x0

[
Φ ′

T (u) − 2c0
]
du

∣∣∣∣χ{|ξT (t)|≤N}

≤ PNT + 2

ε
N sup

|x|≤N

∣∣∣∣
∫ x

x0

[
f ′

T (u)

∫ u

0

gT (v)

f ′
T (v)

dv − c0

]
du

∣∣∣∣,
where PNT is the same as that in Remark 4.1. Using the latter inequality and the
assumptions of Theorem 3.5, we conclude that

sup
0≤t≤L

∣∣γT (t)
∣∣ P→ 0,

as T → ∞.
Since the term γ

(0)
T (t) is the same as that in Remark 4.1, we have (22).

The inequality

sup
0≤t≤L

∣∣γ (3)
T (t)

∣∣ ≤ 2c0

∫ L

0
sup
x

[
aT (s, x) − âT (x)

]
ds

implies that for any L > 0

sup
0≤t≤L

∣∣γ (3)
T (t)

∣∣ P→ 0,

as T → ∞.
Thus, we have for any L > 0

sup
0≤t≤L

∣∣β(1)
T (t) + η

(1)
T (t)

∣∣ P→ 0,

as T → ∞.
It is clear that η(1)

T (t) is the almost surely continuous martingale with the quadratic
characteristic 〈

η
(1)
T

〉
(t) = 4b2

0t +
∫ t

0
qT

(
ξT (s)

)
ds,

where qT (x) = [Φ ′
T (x) − 2c0]2 − 4b2

0. The functions qT (x) satisfy condition (A3).
Thus, using Lemma 5.2, we conclude that for any L > 0

sup
0≤t≤L

∣∣〈η(1)
T

〉
(t) − 4b2

0t
∣∣ P→ 0,

as T → ∞.
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Then, using a random change of time (see [2], Part I, §4), we obtain η
(1)
T (t) =

W ∗
T (〈η(1)

T 〉(t)), where W ∗
T (t) is a Wiener process. The same arguments as those used

to get (9) in [7] yield that

sup
0≤t≤L

∣∣β(1)
T (t) − W ∗

T

(
4b2

0t
)∣∣ P→ 0,

as T → ∞. Thus, the processes β
(1)
T (t) weakly converge, as T → ∞, to the process

2b0W(t).

5 Auxiliary results

Lemma 5.1. Let ξT be a solution to equation (1) from the class K(GT ). Then, for
any N > 0, L > 0 and any Borel set B ⊂ [−N; N ], there exists a constant CL such
that ∫ L

0
P

{
GT

(
ξT (s)

) ∈ B
}
ds ≤ CLψ

(
λ(B)

)
,

where λ(B) is the Lebesgue measure of the set B, ψ(|x|) is a certain bounded function
satisfying ψ(|x|) → 0 as |x| → 0.

Proof. Consider the function

ΦT (x) = 2
∫ x

0
f ′

T (u)

(∫ u

0

χB(GT (v))

f ′
T (v)

dv

)
du.

The function ΦT (x) is continuous, the derivative Φ ′
T (x) of this function is contin-

uous and the second derivative Φ ′′
T (x) exists a.e. with respect to the Lebesgue mea-

sure and is locally integrable. Therefore, we can apply the Itô formula to the process
ΦT (ξT (t)), where ξT (t) is a solution to equation (1).

Furthermore,

Φ ′
T (x)âT (x) + 1

2
Φ ′′

T (x) = χB(x),

a.e. with respect to the Lebesgue measure. Using the Itô formula and the latter equal-
ity, we conclude that

∫ L

0
χB

(
ζT (s)

)
ds = ΦT

(
ξT (L)

) − ΦT (x0) −
∫ L

0
Φ ′

T

(
ξT (s)

)
dWT (s) − αT (L),

with probability one for all t ≥ 0, where ζT (t) = GT (ξT (t)),

αT (t) =
∫ t

0
Φ ′

T

(
ξT (s)

)[
aT

(
s, ξT (s)

) − âT

(
ξT (s)

)]
ds.

Hence, using the properties of stochastic integrals, we obtain that

∫ L

0
P

{
ζT (s) ∈ B

}
ds = E

[
ΦT

(
ξT (L)

) − ΦT (x0)
] − E αT (L). (23)
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According to condition (A2), inequalities |GT (x)| ≥ C|x|α , C > 0, α > 0
and (11), we have ∣∣E[

ΦT

(
ξT (L)

) − ΦT (x0)
]∣∣ ≤ C

(1)
L ψ

(
λ(B)

)
,

for a certain constant C
(1)
L . Condition (A0) implies that

∣∣E αT (L)
∣∣ ≤ C

(2)
L ψ

(
λ(B)

)
,

for a certain constant C
(2)
L . Here the function ψ(λ(B)) is from condition (A2). The

latter inequalities and equality (23) prove Lemma 5.1.

Lemma 5.2. Let ξT be a solution to equation (1) from the class K(GT ). If, for mea-
surable locally bounded functions qT (x), condition (A3) holds, then, for any L > 0,

sup
0≤t≤L

∣∣∣∣
∫ t

0
qT

(
ξT (s)

)
ds

∣∣∣∣ P→ 0,

as T → ∞.

Proof. Consider the function

ΦT (x) = 2
∫ x

0
f ′

T (u)

(∫ u

0

qT (v)

f ′
T (v)

dv

)
du.

The function ΦT (x) is continuous, the derivative Φ ′
T (x) of this function is contin-

uous and the second derivative Φ ′′
T (x) exists a.e. with respect to the Lebesgue mea-

sure and is locally integrable. Therefore, we can apply the Itô formula to the process
ΦT (ξT (t)), where ξT (t) is a solution to equation (1).

Furthermore,

Φ ′
T (x)âT (x) + 1

2
Φ ′′

T (x) = qT (x),

a. e. with respect to the Lebesgue measure. Using the latter equality, we conclude that
with probability one for all t ≥ 0∫ t

0
qT

(
ξT (s)

)
ds = ΦT

(
ξT (t)

) − ΦT (x0) −
∫ t

0
Φ ′

T

(
ξT (s)

)
dWT (s) − αT (t), (24)

where

αT (t) =
∫ t

0
Φ ′

T

(
ξT (s)

)[
aT

(
s, ξT (s)

) − âT

(
ξT (s)

)]
ds.

For any constants ε > 0, N > 0 and L > 0, we have

P
{

sup
0≤t≤L

∣∣αT (t)
∣∣ > ε

}
≤ PNT + 2

ε
sup

|x|≤N

f ′
T (x)

∣∣∣∣
∫ x

0

qT (v)

f ′
T (v)

dv

∣∣∣∣
×

∫ L

0
sup
x

[
aT (s, x) − âT (x)

]
ds,

where PNT = P{sup0≤t≤L |ξT (t)| > N}.
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The same arguments as those used in [8] (see the proof of Lemma 4.2) and the
assumptions of Lemma 5.2 yield that

sup
0≤t≤L

∣∣αT (t)
∣∣ P→ 0,

sup
0≤t≤L

∣∣ΦT

(
ξT (t)

) − ΦT (x0)
∣∣ P→ 0,

sup
0≤t≤L

∣∣∣∣
∫ t

0
Φ ′

T

(
ξT (s)

)
dWT (s)

∣∣∣∣ P→ 0,

as T → ∞. Thus, equality (24) implies the statement of Lemma 5.2.

The statements and the proofs of the following lemmas are the same as those of
the corresponding lemmas from [8].

Lemma 5.3. Let ξT be a solution to equation (1) belonging to the class K(GT ),
and let the stochastic process (ζT , ηT ), with ζT (t) = GT (ξT (t)) and ηT (t) =∫ t

0 G′
T (ξT (s)) dWT (s) be stochastically equivalent to the process (ζ̃T , η̃T ). Then

the process ∫ t

0
g
(
ζT (s)

)
ds +

∫ t

0
q
(
ζT (s)

)
dηT (s),

where g(x) and q(x) are measurable locally bounded functions, is stochastically
equivalent to the process

∫ t

0
g
(
ζ̃T (s)

)
ds +

∫ t

0
q
(
ζ̃T (s)

)
dη̃T (s).

Lemma 5.4. Let ξT be a solution to equation (1) from the class K(GT ), and let

ζT (t) = GT (ξT (t))
P→ ζ(t) as T → ∞. Then for any measurable locally bounded

function g(x), we have the convergence

sup
0≤t≤L

∣∣∣∣
∫ t

0
g
(
ζT (s)

)
ds −

∫ t

0
g
(
ζ(s)

)
ds

∣∣∣∣ P→ 0,

as T → ∞ for any constant L > 0.

6 Examples

We denote by bT the family of such constants that bT > 1 and bT ↑ ∞ as T → ∞.

Example 6.1. Consider equation (1) with the drift coefficient with nonregular depen-
dence on the parameter T of the form

aT (t, x) = b
γ

T cos(xbT ) + tbT

1 + t2b2
T

sin
(
(x − 1)bT

)
, 0 ≤ γ < 1.
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The family of measurable locally bounded real-valued functions âT (x) =
b

γ

T cos(xbT ) satisfies condition 1) from Definition 2.2: for any L > 0

lim
T →∞

∫ L

0
sup
x

∣∣aT (t, x) − âT (x)
∣∣ dt ≤ lim

T →∞

∫ L

0

tbT

1 + t2b2
T

dt = 0.

The rest of conditions from Definition 2.2 are fulfilled for the family of functions

GT (x) = fT (x) =
∫ x

0
exp

{
−2

∫ u

0
âT (v) dv

}
du, T > 0.

Since f ′
T (x) = exp{−2

b
γ
T

bT
sin(xbT )}, then there exist two constants c0 and δ0

such that, for all x ∈ R, we have 0 < δ0 ≤ f ′
T (x) ≤ c0. Taking into account

that GT (x) = ∫ x

0 f ′
T (v) dv, we obtain G′

T (x)âT (x) + 1
2 G′′

T (x) ≡ 0. Therefore, the
conditions of Definition 2.2 are fulfilled as follows:

condition 2)

[
G′

T (x)aT (t, x) + 1

2
G′′

T (x)

]2

+ [
G′

T (x)
]2

=
[
G′

T (x)
tbT

1 + t2b2
T

sin
(
(x − 1)bT

)]2

+ [
G′

T (x)
]2 ≤ 2

[
G′

T (x)
]2

≤ 2c2
0 ≤ 2c2

0

[
1 + ∣∣GT (x)

∣∣2];∣∣GT (x0)
∣∣ =

∣∣∣∣
∫ x0

0
f ′

T (v) dv

∣∣∣∣ ≤ c0 · |x0| = C;

condition 3) ∣∣GT (x)
∣∣ =

∣∣∣∣
∫ x

0
f ′

T (v) dv

∣∣∣∣ ≥ C|x|α with C = δ0, α = 1;

condition 4) ∣∣∣∣
∫ x

0
f ′

T (u)

(∫ u

0

χB(GT (v))

f ′
T (v)

dv

)
du

∣∣∣∣
≤ C0

δ0

∣∣∣∣
∫ x

0

∫ u

0
χB

(
GT (v)

)
dv du

∣∣∣∣≤C1λ(B)|x| ≤ ψ
(
λ(B)

)[
1 + |x|m]

with ψ(|x|) = C1|x|, m = 1.

Thus, equation (1) belongs to the class K(GT ). According to Theorem 3.1, the
family of the processes ζT (t) = GT (ξT (t)) is weakly compact. We can find the form
of the limit process using Theorem 3.2 with a0(x) ≡ 0, σ0(x) ≡ 1. According to
Theorem 3.2, the stochastic processes ζT (t) weakly converge, as T → ∞, to the
solution ζ(t) to equation (4) and the limit process is ζ(t) = x0 + Ŵ (t), where Ŵ (t)

is a Wiener process.
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Example 6.2. Let the conditions of Example 6.1 hold. For the family of functions

gT (x) = b
γ

T

1 + b2
T x2

, 0 ≤ γ < 1,

the assumptions of Theorem 3.3 hold with g0(x) ≡ 0.
According to Theorem 3.3, the stochastic processes

β
(1)
T (t) =

∫ t

0
gT

(
ξT (s)

)
ds =

∫ t

0

b
γ

T

1 + b2
T ξ2

T (s)
ds, 0 ≤ γ < 1

weakly converge, as T → ∞, to the process β(1)(t) ≡ 0.
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