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Abstract We study random independent and identically distributed iterations of functions
from an iterated function system of homeomorphisms on the circle which is minimal. We show
how such systems can be analyzed in terms of iterated function systems with probabilities
which are non-expansive on average.
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1 Introduction

We study iterations of a finite family of circle homeomorphisms. This topic has been
studied already from a number of different points of view. One may, for example,
take a purely deterministic approach and study the associated action of the group
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of circle homeomorphisms (the special case of the group of orientation preserving
circle diffeomorphisms is treated in [12, 19, 13]). Or one may, as we will, take a
probabilistic approach and investigate Markov chains generated by random indepen-
dent and identically distributed (i.i.d.) iterations of functions from the family (such as
in [16, 8, 21]).

We restrict our attention to families of functions which are forward minimal in
the sense that for any two points on the circle, there are orbits from the first point
arbitrary close to the second one using some concatenations of functions from the
family. The set of distances which are preserved simultaneously by all maps allows
us to distinguish between distinct types of ergodic behavior for such Markov chains.

By finding a topologically conjugate system which is non-expansive on average,
under the additional assumption that the system of inverse maps is forward minimal,
we prove limit theorems including almost sure synchronization of random trajectories
(which is sometimes also referred to as Antonov’s theorem [1]) provided that the
system is not topologically conjugate to a family containing only isometries, and
uniqueness and fiberwise properties of stationary distributions.

In contrast to many previous authors we do not assume that all maps preserve
orientation or, a priori, that the system of inverse maps is forward minimal (such as
in [1, 12, 14, 19, 13, 21]) or contains at least one map which is minimal (as in [21]).
Our setting is also studied in [17] (without any minimality condition), where a dif-
ferent approach is used and ideas of [3] are adapted which in turn are built on ideas
of [15, 8]. See also [22]. One further precursor in a more specific setting is the work by
Furstenberg [10] where the homeomorphisms are the projective actions of elements
of SLy(R).

2 Random iterations

Let K be a compact topological space equipped with its Borel sets. We call a finite set

F ={fi1,..., fn} of continuous functions f;: K — K, j = 1,..., N, an iterated
function system (IFS). If all maps f; are homeomorphisms, as we will in general
assume here, then we also consider the associate IFS F~1 := {fl_l, el fﬁl} of the

inverse maps.

We will discuss different points of view on random and deterministic iterations of
functions from an IFS and recall some standard notations and facts.

Given (1,,),>1 a stochastic sequence with values in {1, ..., N}, for x € K define

Zy = (fr,0 -0 fr)0),  Zj=x.

We may consider without loss of generality the (a priori) unspecified common do-
main of the random variables I, as ¥ = {1, ..., N}V, equipped with a probability
measure P defined on its Borel subsets, with I,, being defined as I,,(w) = w, for
every w = (wjwy...) € Y andn > 1.

We will later also consider the shift map o: ¥ — X defined by o (ww;3 . ..) :=
(w3 ...).

Forany w = (wjw,...) € ¥, any n > 0 and any x € K we thus define Z;, (w) =
Z,(x, w), where

Zy(x, @) = (fo, 00 fo,)(x), Zo(x, w) = x. (1
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The sequence (Z, (x, w)),>0 is called the trajectory corresponding to the real-
ization w of the random process (Z;),>0 starting at x € K. It is common to also
consider iterates in the reversed order and to define

Zn(X, @) = (fun 00 f)(x),  Zo(x,®) = x. )

If F is an IFS of homeomorphisms, then we also consider the associate sequence
(Z,, (x, ®))n>0 defined by

Z, (x,w) :=( “To...0 w_ll)(x), Zy (x, w) = x,

Wp
and the sequence (2? (x, ®w))n>1 defined by

2;(x,w) = (f*1 o---0 wfnl)(x), Z;(x,w) = x. 3)

w1

Note that for every w € X' and x € K it holds
- — = - —1\—1
Zy (0, 0) = (fu, 00 fo) T @) and  Zyx o) = (f 00 f31)T ().

2.1 Iterated function systems with probabilities and Markov chains

Let (I;)s>1 be i.i.d. variables. The probability measure P is then a Bernoulli mea-
sure determined by a probability vector p = (p1, ..., py). It then follows that
Zy = Zp(x, -) defined in (1) and ’Z\,’i = 2,1 (x, -) defined in (2) both have the same
distribution for any fixed n > 1, and (Z}),,>0 is a (time-homogeneous) Markov chain
with transfer operator 7' defined for bounded measurable functions z: K — R by

N
Th(x) =Y pih(f;(x). )
j=1
If p is non-degenerate, that is, if p; > O for every j = 1,..., N, then we call

the pair (F, p) an IFS with probabilities. The Markov chain (Z;),>o is obtained
by independent random iterations where in each iteration step the functions f; are
chosen with probability p;.

Markov chains generated by IFSs with probabilities is a particular class of Markov
chains that has received a considerable attention in recent years. The IFS terminology
was coined by Barnsley and Demko [4].”

A Borel probability measure p on K is an invariant probability measure for the
IFS with probabilities (F, p) if

Tep =, where Tyu(-) = iju(fjf‘(.)),
J

2 A common abuse of notation is to use the term “IFS” for the Markov chain (Z3})n=0 obtained from
an IFS with probabilities. We here stress the deterministic nature of an IFS and the fact that an IFS can be
used to build other objects like e.g. (2,1 (x, w))p>0. A common way to construct fractal sets is for example
to regard them as sets of limit points for the latter sequence (assuming conditions such as, for example,
contractivity ensuring the limit to exist).
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Such a measure u is also called a stationary distribution for the corresponding Markov
chain, since if X is a p-distributed random variable, independent of (/,),>0 then
(Z,’f )n>0 Will be a stationary stochastic sequence.

Remark 1. By continuity of all functions f;, j = 1, ..., N, it follows that (Z};),>0
has the weak Feller property, that is, T maps the space of real valued continuous
functions on K to itself. It is well known that Markov chains with the weak Feller
property have at least one stationary distribution, see for example [18]. Hence, any
IFS with probabilities (F, p) has at least one invariant probability measure.

Remark 2. Another formalism (which will not be used here) for analyzing stochastic
sequences related to an IFS with probabilities is the one of a (deterministic) step skew
product map (w, x) — (o(®), fu, (x)) with the shift map o: ¥ — X in the base
and locally constant fiber maps. The Bernoulli measure is a o-invariant measure in
the base. Invariant measures (and hence stationary distributions) are closely related
to measures which are invariant for the step skew product (see, for example, [23,
Chapter 5]).

Given a positive integer n, defineby 7" = To---oT and T]' = Tyo---oT; (eachn
times) the concatenations of 7 and T, respectively. We call a stationary distribution
w for (Z;)),=0 attractive if for any x € K we have T'5, — p asn — oo in the
weak topology, where 8, denotes the Dirac measure concentrated in x € K. In other
words, for any continuous #: K — R and for any x € K we have

lim T"h(x) = /hdu. (5)
n—o0
An attractive stationary distribution is uniquely stationary.

Let p be some metric on K. We say that an IFS with probabilities (F, p) is con-
tractive on average with respect to p if for any x, y € S' we have

N
D o pin(fi@), £;()) < eplx, ), ©6)

j=1

for some constant ¢ < 1 and non-expansive on average if (6) holds for some constant
c<1.

Remark 3. It is well known that a Markov chain (Z}),>0 generated by an IFS
with probabilities (F, p) which is contractive on average has an attractive (and hence
unique) stationary distribution. More generally the distribution of Z;, then converges
(in the weaks* topology) to the stationary distribution with an exponential rate that
can be quantified for example by the Wasserstein metric, see e.g. [20].

Far less is known for non-expansive systems. The theory for Markov chains gen-
erated by non-expansive systems can be regarded as belonging to the realm of Markov
chains where {T"h} is equicontinuous for any continuous 4: K — R, or “stochasti-
cally stable” Markov chains (see [18] for a survey).

The Markov chain (Z;)),>0 is topologically recurrent if for any open set O C K
and any x € K we have

P(Z; € O for some n) > 0.
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In the present paper we are going to study a special class of topologically recurrent
Feller continuous Markov chains generated by IFSs with probabilities of homeomor-
phisms on the circle. The topology of the circle and the hence implied monotonicity
of the maps play a crucial role for our results.

3 IFSs with homeomorphisms on the circle

From now on we will always assume K = S! = R/Z to be the unit circle and
consider an IFS F = {fj}}\’:1 of homeomorphisms f; : St — S'. Letd(x,y) :=

min{|y — x|, 1 — |y — x|} be the standard metric on S'.

3.1 Deterministic iterations and simultaneously preserved distances

AnlIFS F = {fj}?’=1 is forward minimal if for any open set O C K and any x € K
there exist some n > 0 and some w € X such that

Zy(x,w) € 0.

In other words, for a forward minimal IFS it is possible to go from any point x arbi-
trarily close to any point y by applying some concatenations of functions in the IFS.
We say that the IFS F = {f j};\;l of homeomorphisms f; is backward minimal if the

IFS {f; '}, is forward minimal,

Remark 4. Note that F is forward (backward) minimal if and only if for every
nonempty closed set A C S' satisfying fiA) C A (fj_l(A) C A) for every j
we have A = S,

Note that not every forward minimal IFS is automatically backward minimal if
N > 1 (see [5] for a discussion and counterexamples). By [5, Corollary E], an IFS
is both forward and backward minimal if and only if there exists an w € £2 such
that (Z,(x, w))n>0 is dense, for any x € S'. (By forward minimality this property
trivially holds for some fixed x € S!, but the choice of @ might depend on x € S1.) A
simple sufficient condition for an IFS of circle homeomorphisms to be both forward
and backward minimal is that at least one of the maps has a dense orbit. A class
of IFSs which are forward and backward minimal (so-called expanding-contracting
blenders) but without a map with a dense orbit can be found in [9, Section 8.1].

The following is somehow related to the study of the well-known concept of ro-
tation numbers of orientation-preserving circle homeomorphisms which was intro-
duced by Poincaré and which provides an invariant to (almost completely) charac-
terize topologically conjugacy.® Rotation numbers are also important when studying
an IFS (which can be considered as a special group action) of orientation-preserving
circle homeomorphisms. The surveys [12, 19] review these facts, see also [13].

Here we deal with a more general class of IFSs in which not necessarily all maps
preserve orientation.

3The rotation number r(f) of a circle homeomorfism f is rational if, and only if, f has a periodic
orbit. If (f) is irrational then f is semi-conjugate to a rotation by angle r(f) and, in particular, this
semi-conjugacy is a conjugacy if f is minimal.
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Given F and a metric p on S', let L = L(F, p) defined by

L:= {s € [0, 1/2]: p(x, y) = s implies that,o(fj(x), fj(y)) =5

) : ! @)
forany j=1,...,Nand (x,y) € S' x S'}

be the set of p-distances which simultaneously are preserved by all maps in F.

Remark 5. Note that since all maps of the IFS are homeomorphisms it follows that
for every x, y € S! with p(x,y) € L(F, p) we have

px,y) =p(fi), fi(») = ,O(fj_l(x), fJ-_l(y)) forall j =1,..., N,

and thus L(F, p) = L(F~!, p). Moreover, note that by continuity of the maps of the
IFS, the set L is closed.

We have the following dichotomy.
Lemma 1. If L = L(F, p) is finite, then

12 k/2
L = 07_’_7"‘7u )
k k k
for some k > 1.
If L = L(F, p) is infinite, then L = [0, 1/2]. All IFS maps are then isometries

(with respect to p).

Proof. Consider the operation @: L x L — S! defined by
s1 @ s := min{s| + 52, | — 51 — s2}.

Note that L is closed under this operation, that is, @ : (L x L) — L. Indeed, given
s1,s0 € L, if x, z € S! are such that p(x,z) = 51 @ s, then there is a point y € s!
such that p(x, y) = s1 and p(y, z) = s2. Thus, we have p(f;(x), f;(y)) = s1 and
p(fi(¥), fj(2) = s forevery j = 1,..., N. Since all maps f; are homeomor-
phisms, it follows that p(x,z) = p(f;(x), fj(z)) forall j = 1,..., N and hence
s1®sy € L.

It follows that if L is finite (and nontrivial) then the smallest positive element of
L must be a rational number of the form 1/k for some integer ¥ > 1 and hence L
must have the given form.

If L is infinite, then L = [0, 1/2], since L has then arbitrary small positive ele-
ments and must therefore be a dense, and by continuity of all maps in F', also a closed
subset of [0, 1/2]. All IFS maps are then isometries. |

Remark 6. If L(F,d) is finite and 1/k is its smallest positive element, then the
IFS F = {f;} with maps f;(x) = k(f;(x/k) mod 1/k), j = 1,..., N, satisfies
L(F,d) = {0}. Thus, we can describe the dynamical properties of an IFS with the set
of preserved distances L(F, d) being finite in terms of the dynamics of an IFS with
no positive preserved distances. Observe that each of the maps f; is semiconjugate
with f} by means of the map 77 : S! — S! defined by 7 (x) = kx mod 1, that is, we
have 7 o f; :fjon.
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Intuitively we may in all cases regard the infimum of all positive elements of
L = L(F,d) as the “common prime period” of all maps, where the case when L
is infinite corresponds to a degenerated case. As mentioned above, for orientation-
preserving homeomorphisms this number can be compared with the rotation number
functions in [12, 19, 13].

3.2 Random iterations

First, recall the following well-known fact about forward minimal IFSs with proba-
bilities on S (compare also [19, Lemma 2.3.14]). We say that a measure y has full
support if the support of j is S.

Lemma 2. Let (F, p) be an IFS with probabilities of homeomorphisms on S' and
W+ be an invariant probability measure for (F, p). If F is forward minimal then [
is nonatomic and has full support.

Proof. By contradiction, suppose that st is atomic. Let x € S! be a point of maximal
positive - -mass. By invariance of 4, we obtain

e (lx}) = i pint ({7 0

and hence, since we assume that p is non-degenerate, we have w4 ({f j_l(x)}) =
w4 ({x}) for every j. Hence, we obtain that the (nonempty) set

A=|{ye st 1t ((0)) = nt ()}

satisfies f J._I(A) C A for every j. Since u4 is finite, A is finite (and, in particu-

lar, closed). Hence, since every f j_l is bijective, we in fact have f j_l(A) = A and
fi(A) = A for every j. Assuming that F is either backward minimal or forward
minimal, we hence obtain A = S!, which is a contradiction. Hence W4 1s nonatomic.

An analogous argument shows that @ has full support. Indeed, let the (closed)
set A = supp p+ denote the support of x . By invariance of ., for every j we have
e fj_l(A)) = 114 (A) = 1 which implies A C fj_l(A), ie. fj(A) C A for every
Jj,»soif (F, p) is forward minimal, then p 4 has full support. O

We say that a probability measure @ on Sl is s-invariant for s € [0, 1]if (Ry) st =
u, where Rg(x) = (x + s) mod 1. Analogously, we say that an S'-valued random
variable X is s-invariant if its distribution is s-invariant, in which case X and R, (X)
have the same distribution.

Lemma 3. Let (F, p) be an IFS with probabilities of homeomorphisms on S' which
is forward minimal. Then any invariant probability measure for (F, p) is s-invariant
foranys € L(F,d).

Proof. Let u be an invariant probability measure for (F, p). Lets € L(F, d). Con-
sider an arbitrary interval I of length s satisfying w(I) > w(I’) for all other intervals
I’ of length s. By invariance of u we have u(I) = Z/ pj,u(fj_l(l)). Hence, since

p is non-degenerate, it follows that (1) = u(f jfl (I)) for every j.
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Since [ is of length s € L(F,d) = L(F~',d), the interval fj_l(I) is also of
length s for any j. More generally, the pu-measure of the image of / under arbitrary
finite concatenations of functions from F~! is an interval of length s and of measure
w(I). By forward minimality and continuity of the maps in F it therefore follows that
all intervals of length s have the same p-measure equal to (7).

This property implies that u is s-invariant. Indeed, consider an arbitrary interval
(c,d) in S!, where d = Ry (c), for some 0 < o < 1/2. If « is larger than s then

uie.d) = u((e. R(©)) + n((Rs(©). ) = u((d- Ry(@)) + p((Rs(c). )
= u((Rs(e), Ry(@))).

Otherwise, if « is smaller than or equal to s, then

(e, d) + u((d, Rs(0))) = p((c, Rs(0))) = n(l) = u((d, Rs(d)))
= u((d, Rs(©))) + 1((Rs(0), Rs(d))),

which also implies p((c, d)) = w((Rs(c), Rs(d)). U

Given a measurable transformation ®: S! — S! and a probability measure ,
we denote by @, u the pushforward of p defined by @, u(E) = w(®~1(E)) for each
Borel set E of S'.

Remark 7. Recall that if 1 is nonatomic (i.e. continuous) and fully supported Borel
measure on S! then its distribution function defines a homeomorphism @ : S! — S!
and @, 1 = piLep.

We state a preliminary result.

Proposition 1. Let (F, p) be an IFS with probabilities of homeomorphisms on S'
which is backward minimal. Let ;v_ be an invariant measure for (F~', p) and let

&_: S! — S! be defined by ®_(x) := u_([0, x1). Then
p(x, y) i=minfu_([x, 1), n—([y, x1)}

is a metric on S' and (F, p) is non-expansive on average with respect to p.
The IFS G = {gj}j.v:l given by the maps g; = qb_ofjocD:‘, j=1,..., N, with
probabilities p is non-expansive on average with respect to d and we have L(G, d) =

L(F, p).

Proof. Let (F, p) be an IES with probabilities of homeomorphisms on S' which is
backward minimal. Let @_(x) = u_([0, x]), where u_ is an invariant probability
measure for (F -1 P), and define

p(x, y) i= min{pu (Lx, v1), u—(Iy. 1) ).

Clearly, L(G,d) = L(F, p). By Lemma 2 applied to (F~L P), [L— is nonatomic
and has full support and hence we have p(x,y) > 0 and p(x, y) = 0 if and only if

4The main idea is well known (see, for example, [16, p. 118] and [13], where the authors also consider
a measurable bijection analogous to the here defined conjugation map @_).
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x = y. Moreover, clearly p(x, y) = p(y,x) and p(x, y) < p(x,z)+ p(z, y). Hence,
o defines a metric on S!. The definition of p and the invariance of _ together imply

Mz

p(fi@), fim) =) pyminf{u_([f;0), f;M]), = ([f; ), f;)])}

an

I
-

J

7 min{u— (f; (I, ¥1)), 1= (£ (1, %1))}

Il
M=

N
=m {Z — (£ (Cx. y1) me (i (D x]))}
=1 j=1
= min{p_([x, 1), n—(Iy. x)D} = p(x, y).
which proves that (F, p) is non-expansive on average with respect to p. O

The following result can be regarded as the heart of the paper.’

Theorem 1. Let (F, p) be an IFS with probabilities of homeomorphisms on S' which
is forward minimal and non-expansive on average with respect to some metric p.
Then p(Z;, Z;)) converges almost surely to an L-valued random variable for any
X,y € St where L = L(F, p).

As an immediate corollary of Proposition | and Theorem | we get the following
result. This type of result is usually referred to as Antonov’s theorem (see [2], where
all maps in the IFS are assumed to preserve orientation, see also [13, 14]). Also in our
generality, the present corollary is not new and follows (although not explicitly stated)
from results by Malicet [17] who studied an even more general setting ( without
assuming minimality).

Corollary 1. Let (F, p) be an IFS with probabilities of homeomorphisms on S which
is forward and backward minimal. Then exactly one of the following cases occurs:

1) (synchronization) For any x,y € S' and almost every v € X we have
d(ZVl(xa w)5 Zn(y, a))) —> Oasn — OQ.

2) (factorization) There exists a positive integer k > 2 and a homeomorphism
w: S! — S of order k (that is, W* = id) which commutes with all fj- More-
over, there is a naturally associated IFS F = { fj} where each map f] isa
topological factor® (with a common factoring map) of the corresponding map
fj of F such that (F, Pp) has the synchronization property claimed in item ).

3) (invariance) All maps f; are conjugate (with a common conjugation map) to
an isometry (with respect to d). There exists a probability measure which is

5 A similar statement (without proof and stated for systems where all homeomorphisms preserve orien-
tation) can be found for example in [13].

OWe callamap g: S! — S! a ropological factor of f: S — Sl if there exists a continuous surjective
map 7 : S! — S! such that = of=gom.
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invariant for all maps f;, j =1, ..., N, and hence also uniquely invariant for
(F, p).

Proof. Apply Proposition 1 to (F, p) and consider the homeomorphism &_: S! —
S', and the metric p such that (F, p) is non-expansive on average with respect to p.
Consider the IFS (G, p), conjugate to (F, p) through the conjugating map @_, which
is non-expansive on average with respect to d and recall L = L(F, p) = L(G,d).
We consider three cases:
Case L = {0}. By Theorem 1, we have p(Z
a.s., proving item 1).
Case L finite and nontrivial. By Lemma 1, L(G,d) = {0, 1/k, ..., |k/2]/k} for
some k > 2. By Remark 6 applied to (G, d), with fvj(x) = gj(x) = k(gj(x/k)
mod 1/k) we have f; oW = W o f;, where ¥ = 7 o &~ with (x) = kx mod 1,
and the IFS (F, p) satisfies L(F,d) = L(G, d) = {0}.

Since by Lemma 3 we have o-! (Ry/x(x)) = (d):l (x)+1/k) mod 1, it follows
that

X 77y = Oas. and thus d(Z;;, Z) =0

n’

W(Ri/e(0) = (w0 @21 (Rijx(v))
=n((¢='()+ 1/k) mod 1) = (1 0 =" (x) = ¥ (x),

and thus ¥ is an order K homeomorphism having the claimed properties, proving item
2).

Case L infinite. By Lemma 1, we have L(G,d) = [0, 1/2]. All maps in G are
thus isometries (with respect to d) and hence simultaneously preserve the Lebesgue
measure. The measure w4 = (@:1)*,uLgb is invariant for all maps of F, and by
Lemma 3 uniquely invariant for (F, p), proving item 3). U

Remark 8. IFSs with nontrivial L can be regarded as degenerated systems. For a
typical system satisfying the conditions of Theorem 1 we thus have that p(Z2, Z;) —
0asn — oo as. for any x,y € S!. Using techniques from [17, Theorem D] it
seems plausible that it should be possible to prove that convergence is exponential
(see also [16]), and that (F, p) is contractive on average with respect to some metric
in this case.

Proof of Theorem 1. Let (F, p) be a forward minimal IFS which is non-expansive
on average with respect to p. Let %, be the sigma field generated by Iy, ..., I,,. Fix
X,y € S!. Note that Z; and Z,“z are both measurable with respect to %;, and

E(0(Zysr Zys)1F0) = Blp(f1,11(Z2): f1,41(Z0))1%0)
= X_: 2): 1i(Zn)) = p(Z5. Z3)

so the stochastic sequence (o (Z;, A4 ))n>0 is a bounded super-martingale with re-
spect to the filtration {#,}. By the Martingale convergence theorem it follows that

p(Zy, Z)) % & as n — oo for some random variable & = £*+7.,
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Let L = L(F, p). We will now show that & is L-valued a.s., that is, we will show
that the distance between any two points a, b € S! with p(a, b) = &(w) is preserved
by all the maps in F for P a.a. w € X.

We will show that any two points a, b € S! with p(a, b) = &(w) can simultane-
ously be (almost) reached by {Z, (x, w), Z,(y, w)} followed by an application of an
arbitrary map for infinitely many » and that this leads to a contradiction if the dis-
tance between some points with distance & (w) is not preserved by all maps in F for a
typical w.

Let us first prove the following claim that for any z and any index j, any open set
in S' will be visited followed by an application of the map f j infinitely many times
by trajectories (Z,(z, w))n>0 corresponding to typical realizations .

Claim 1.1. For any z € S! and any open set O C S' and any j € {1,..., N} we
have

oo oo
P@2)=1 where 2:=)|J{o:Zz 0 €0 041 =}

m=1n=m

Proof. Let z € S!. Consider an open set O C S! and an index j € {1, ..., N}. By
forward minimality, for every ¢ € S! there exists some positive integer ng and some
¢g > 0, such that

P(Z} €0, 1,11 =j)=P(Zl € O)P(y,41=j) > cq > 0. 8)

Considering the left hand side expression in (8) as a function of g, by continuity
(recall the weak Feller property) one concludes that there exists an open set O, con-

taining ¢ and some positive integer n, and some c; >0

P(Z,ﬁq €0, Ip,+1 = j) > c; >0
for any z € O4. Thus, by compactness, there exists a positive integer N such that

inf1 P(Zﬁ € 0, I,41 = j forsomen < N) =:s5 > 0.
qesS

Let
Ap = {a): Z,(z,w) € O,wp41 = J, forsomen € {mN,..., (m+ 1N — 1}}

= {w: Z;z—mN(ZmN(va)vamN(w)) € 0,wn41 = J,
for somen € {mN, ..., (m + )N —1}}.

For any m > 1 we have
P(Ap) = inf P({ow: Zy-mn(g.0™ (@) € O, wp41 = j.
ge
for some n € {mN, ..., (m + 1)N —1}})

= inf1 P(ZZ € 0, I,4+1 = jforsomen < N) =s>0
qesS
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and hence P(Aj,) < 1 —s. More generally, we can similarly show that

k

P(ﬂ Afn) <1 -9k,

m=j

for any j < k, which implies

(A0 10 )

j=lm=j
This implies the assertion. O

We can now choose £2 with P(£2) = 1 such that for any w € £2, for any a
priori fixed index j, the trajectory (Z,(x, w)),>0 Visits infinitely many times any
open interval followed by an application of f;. Indeed, let {ay}; be a dense set in St
and for every index pair (k, £) € N? let Q,f ; be the set provided by the Claim for the
point x, an index j, and the open set Ok ¢ = (ax — 1/€, ax + 1/£). Let

szﬁﬂﬂszg’e

j=1keN(eN

and note that P(£2) = 1.

By the above, without loss of generality, we can also assume that £2 is such that
for every w € §2 we have p(Z,(x, w), Z,(y, w)) — &(w) asn — oo.

Fix w € £2. Let a, b, ¢ be points in S!, with p(a,b) = p(a,c) = &(w), where
b is obtained from a by a clockwise rotation and c is obtained from a by a counter-
clockwise rotation. Note that if 0 < &(w) < 1/2 then the points a, b, ¢ will be
distinct, and otherwise b = c. By definition of 2 we know that if O, is an open set
containing a, O is an open set containing b, and O, is an open set containing ¢ then
there are infinitely many » such that Z,(x, w) € O, and either Z,(y, w) € Op or
Z,(y, w) € O.. We say that a is clockwise nice if for arbitrarily small open sets O,
and Oy containing a and b, respectively either Z,(x, w) € O, and Z,(y, w) € Op
simultaneously or Z,(y, w) € O, and Z,(x, w) € Op simultaneously for infinitely
many n, and counterclockwise nice if for arbitrarily small open sets O, and Oy con-
taining a and b, respectively either Z, (x, w) € O, and Z,(y, w) € O, simultane-
ously or Z,(y,w) € O, and Z,(x, w) € O, simultaneously for infinitely many n.
We call a nice if a is both clockwise nice and counterclockwise nice.

Claim 1.2. Anya € S' is nice.

Proof. We first prove that there exist both clockwise nice and counterclockwise nice
points. Indeed, by definition of £2, any a € S' is either clockwise nice, counterclock-
wise nice, or nice. By contradiction, suppose that all points a € S! are only clockwise
nice (the case that all points are only counterclockwise nice is analogous). Then, in
particular, a given point a and the point ¢ obtained from a counterclockwise rotation
of a would both be only clockwise nice. But ¢ being clockwise nice would imply that
a is counterclockwise nice, contradiction.
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Thus, there exist points of either type which are arbitrarily close to each other.
Hence, there exists at least one point in S! which is nice.

By definition of £2 it follows that nice points are mapped to nice points by all
maps, so by forward minimality it follows that every point in S! is nice. O

Let us now prove that the distance between any two points a,b € S' with
p(a,b) = &(w) is preserved by all the maps in F. Arguing by contradiction, sup-
pose that £ (w) ¢ L, and consider an interval [a, b] with p(a, b) = &(w) such that for
some j € {1,..., N} we have

p(a,b) # p(fia), f;b)).

By continuity of f}, there exist open intervals O, and O}, containing a and b, respec-
tively and some positive number & such that for any ¢’ € O, and any b’ € Op we
have

|o(a’ ) = p(fi(d), £; ()] > e
By choice of £2 and the fact that a is nice, there exist arbitrary large integers n such

that either Z,(x, w) € O,, and Z,(y, w) € Oj simultaneously or Z,(y, w) € Oy,
and Z,(x, w) € Op simultaneously and [+ (w) = w,+1 = j. Hence

|p(Zn(x, @), Zu(y, @) = p(Zns1(x, ), Zug1 (3, @))| > &,

contradicting the assumption that w € £2.
This completes the proof that for any x,y € S!, p(Z¥, Z)) converges almost
surely to an L-valued random variable. O

The following result about uniqueness of invariant probability measures is not
new and was, to the best of our knowledge, first proved in [17]. A simple direct proof
based on equicontinuity was recently presented in [22]. Note that equicontinuity of
{T"h}, where T"h(x) = f h(Z,(x, w)) d P(w) for any Lipschitz continuous function
h:S' — R, follows trivially from Proposition 1. Indeed, if p is the metric of Propo-
sition 1, then f p(Zy(x, w), Zy(y, w))dP(w) < p(x,y). For completeness we will
show that uniqueness of invariant probability measures is also a very simple conse-
quence of Theorem 1.

Corollary 2. Any IFS (F, p) with probabilities of homeomorphisms on S' which is
forward and backward minimal has a unique invariant probability measure |4 .

Proof. Let ;_ be an invariant probability measure for (F~!, p) and define the metric
p by p(x,y) := min{u_([x, y]), u—([y, x])}. By Proposition I, the IFS G = {g;};
defined by g; :=P_o fjo q§:1, where @_ (x) = u_([0, x]), with probabilities p is
non-expansive on average with respect to d and we have L := L(G,d) = L(F, p).

By Theorem 1, with Z, as in (1) and W,, := ®_o0 Z, o &=, we have that
d(wy, W) converges almost surely to an L-valued random variable as n — oo, for
any x,y € S..

We are now going to show that there is a unique invariant probability measure
vy for the IFS (G, p). This will imply that p4 := (CD:I)*er is the unique invariant
probability measure for (F, p).
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Let us divide the proof into cases:

Case L = {0}. Consider first the (generic) case L = {0}. Thus, d(W,, W) — 0as
n — ooas. forany x, y € S!. Let v be an invariant probability measure for (F, p),
that is, a stationary distribution for (W,),>o (recall Remark 1). Forany x, y € S! and
for any continuous /#: S! — R, by Lebesgue’s dominated convergence theorem

T"h(x) — T"h(y) = / h(Wy(x, w))d P(w) — / h(Wu(y, w))dP(w) — 0
z z
as n — 00, and thus by invariance of vy we have

‘T"h(x) - / hdv,

T"h(x) — f T"hdv.,

< / IT"h(x) — T"h(y)| vy ()

and by Lebesgue’s dominated convergence theorem the latter tends to 0 as n — oo.
This implies that v must be attractive and thus unique (recall Remark 3).

Case L = {0,1/k, ..., |k/2]/k} for some k > 2. By Lemma 3 all invariant prob-
ability measures for (G, p) are 1/k-invariant. By contradiction, suppose that there
are two distinct invariant probability measures v}r and vi for (G, p). Hence, if X
and Y are two random variables with distribution v _IF and vi respectively, indepen-
dent of {I,}, then WX mod 1/k, and W) mod 1/k will also have distinct distri-
butions for any fixed n > 0, by 1/k—invariance of v_l‘_ and vi. The latter is how-
ever impossible since the IFS G = {g;} defined by g;(x) = k(g;(x/k) mod 1/k),
j=1,..., N, satisfies L(G, d) = {0} (recall Remark 6) and therefore the distribu-
tion of WX mod 1/k converges to the same limit as the limiting distribution of WY
mod 1/k, as n — oo. The invariant probability measure, v, is therefore unique.

Case L = [0, 1/2]. In this case, by Lemma 1 all maps in G are isometries (with
respect to d). By Lemma 3, any invariant probability measure is s-invariant for any
s € [0, 1/2], which implies that v; must be the Lebesgue measure. O

By applying Breiman’s ergodic theorem for Feller chains with a unique stationary
distribution starting at a point (see, for example, [6] or [18]), we get the following
result. Let 8, denote the Dirac measure concentrated in the point x € S!, and let

—1
K
M;(w) = ; ;321(()(,(0)7

denote the empirical distribution along the trajectory starting at x € S! determined
by w € ¥ attimen — 1.

Corollary 3. Let (F, p) be an IFS with probabilities of homeomorphisms on S' which
is forward and backward minimal and let 4 denote its unique invariant probability
measure. Then [, (w) converges to |14 (in the weakx sense) P a.s. for any x € St

Remark 9. Corollary 3 slightly generalizes [21, Proposition 16] where a direct proof
is given and the additional hypotheses that all maps in the IFS preserve orientation
and that one map is minimal are assumed.
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d e
Let — denote convergence in distribution. We are now ready to state our first
result about invariant measures/stationary distributions for the IFS with probabilities
generated by the inverse maps.

Proposition 2. Let (F, p) be an IFS with probabilities of homeomorphisms on S'
which is forward minimal and non-expansive on average with respect to d. Assume
that some map f; is not an isometry (with respect tod). Then L(F,d) = {0, 1 /k, ...,
Lk/2]/k} for some k > 1 and for any 1/k-invariant nonatomic and fully supported
random variable X on'S!, independent of (In)n>0 we have

Z (X, 0) % 7~ ()

asn — oo for P a.a. w € X, where ™ (w) is a random variable with distribution

lk*l
o =7 . 05%(1'4-2*(0)))
i=

for some random variable Z :¥ - S'and My = (fw_ll)*l/‘;(w) for Paa we X.
Thus, the measure j— given by

M :=/u;dP(w)

is the unique invariant probability measure for (F~', p).

Proof. Let L = L(F,d). By Lemma 1 together with our hypotheses, we have L =
{0,1/k, ..., k/2]/k} for some k > 1. Hence, if d(x, y) = s € L, then

d(fi(0), i) =s
forall j =1,..., N and thus
d(Zn(x, ), Zy(y, a))) =5

foranyw € ¥ andn > 0.

Let us denote by Z,, and Z? the sequences defined in (1) and (3), respectively. By
Theorem 1 we have that d(Z;;, Z)) converges almost surely to an L-valued random
variable as n — oo.

Given w € X, let

2‘(@) = ksup{y: |Zn([0, yl, w)| — 0, asn — oo},
where |-| denotes the length of an interval and where we use the notation
Zl’l([ov )’]7 a)) = {Zl’l(zv CO): e S [07 }’]}

Note that y +— |Z,([0, y], w)| is an increasing function, for each fixed n and w.
Further, |Z, ([0, y], ®)| converges to an element in {0, 1/k, ..., 1} asn — oo, for
any y € S' for P a.a. w € X. Indeed, this follows from the fact that d (Z3;, Z))
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converges to an element of L and the fact that x — Z is a random homeomorphism.
So Z: ¥ — Sl is a well-defined random variable.

Let m be an arbitrary 1/k-invariant nonatomic probability measure fully sup-
ported on S'. Note that if I is an interval of length i /k, then m(I) = i/k for any
0<i<kIfx¢{Z (@/k,(Z (@) +1)/k,....(Z" (@) + (k — 1))/k}, then

m({y es': 2;(y,w) < x}) = m({y es': Zl_(y,a)) € [O,x]})
({y es': Zy (2_(y w), a)) € Z,,([O,x],a))})
—m({y es': y € Zy, ([0 x], w)})

5
0 ifx < k(‘”),
. 2‘_ —l 2‘_ .
N ’; if%QKﬂ,liifk_l’
, Z (@) + (k-1
1 ifx>——T

k

asn — oofor Paa w € Z/‘\ Thus, if X is an m-distributed random variable on S!,
independent of (1,,),>0 and Z~ (w) has distribution

1 k—1

w, = E ZS(H-?’(”))/" for Paa. we X
i=0

then m(Z X,w) < x) —> m(Z (w) <x)asn — ooifxisa contlnulty point of
the cumulative distribution functlon of Z~ (w) (for P a.a. w € X). Thus, Z (X, w)
converges in distribution to 7 (w) asn — oo for P a.a. w € X. By taking 11m1ts in
the equality Zn X, w) = fw1 (Zn_l(X , 0 (w))), it therefore follows that

Z" (o) = [, (Z (cw)),
for P a.a. w. Thus if 1 ) denotes the distribution of 7 (w), then

My = (fo:ll)*“;(w)'

for P a.a. w.

By integrating both sides of this equality with respect to P (recall that P is a
Bernoulli measure determined by a probability vector p = (p1, ..., py)) we thus
obtain that

N

3 IR N
‘w1=j

j=1"¢

P = /u;dP(w)=

N

= X U7 P

j=1"¢

N
= Z/ .(fj_l)*u_dP(a))
j=1 w1=]
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N
j=1

and p_ is therefore invariant for (F~!, p). Since by construction s, is independent
of X, it follows that p_ is indeed uniquely invariant. O

Using Propositions 1 and 2 we get the following corollary.

Corollary 4. Let (F, p) be an IFS with probabilities of homeomorphisms on S' which
is forward and backward minimal. Assume that not all maps in F are conjugate (with
a common conjugation map) to an isometry (with respect to d). Let ju_ be an invariant
probability measure for (F~', p), and let k be the largest integer such that pu_ is
1/ k-invariant. Conclusion: if X is a u—_-distributed random variable, independent of
(In)n=o0, then

77 (X, 0) % 7 (), ©)

asn — oo for P a.a. w € X, where 7 (w) is a random variable with distribution
W, uniformly distributed on k distinct points, and satisfying , = ( fajll)* Mo (w) for
P a.a.w € X. It therefore follows that . _ is unique and given by u— = [ u, d P(w).

Remark 10. Convergence in (9) also follows from Furstenbergs martingale argument
[11], but here we say more about the limit: The limit is 1/ k-invariant and independent
of X (this implies that p_ is uniquely invariant) and the limiting fiber measures 1,
are uniform and supported on sets of size k.

Proof. Let ;. be an invariant probability measure for (F~!, p). By Proposition 1,
the IFS G = {g;}, defined by g; := ®_o f; o @~!, where D_(x) = u—([0, x],
with probabilities p satisfies the hypotheses of Proposition 2. Note that F' is forward
minimal if, and only if, G is. Let L(G, d) be the corresponding set of simultaneously
preserved distances. By Lemma 1, we have L(G,d) = {0, 1/k, ..., |k/2]/k} for
some k > 1.

Let us denote by (Wn_ )n>0 the sequence for the IFS G which is analogously de-
fined as in (3) for the IFS F. Since F and G are conjugate by means of @_, it is easy
to check that

Z; =0 oW od_.

Note that if X is a p_-distributed random variable, independent of (/,,),>0, then
Y := &_(X) is distributed according to the Lebesgue measure on S'. Hence, in
particular, it follows that Y is a 1/k-invariant, nonatomic, and fully supported random
variable on S!.

By Proposition 2, it therefore follows that

~_ =_ d &
W, (P-(X),0) = D_(Z, (X, 0)) > W (0)
asn — oo for P a.a. w € X, where W- (w) is a random variable with distribution
=

Vo = 3 22 0L W@

i=
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for some random variable W~ : ¥ — S! that is, we have
Z7 (X, 0) > o~ (W™ ()

asn — oo for P a.a. w € X. Thus, if we define 2‘(a)) = @:I(W_(a))), then
this random variable has distibution i, (-) = v, (®_(-)). Moreover, the measure p_
given by

M- :=fu;dP(w)

is the unique invariant probability measure for (F~!, p). 4

Remark 11. If (F, p) is both forward and backward minimal, then by applying the
above Corollary to (F~!, p) we obtain an alternative proof of uniqueness for s
under these assumptions.
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