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Abstract The paper is devoted to the restricted Oppenheim expansion of real numbers
(ROE), which includes already known Engel, Sylvester and Lüroth expansions as partial cases.
We find conditions under which for almost all (with respect to Lebesgue measure) real num-
bers from the unit interval their ROE-expansion contain arbitrary digit i only finitely many
times. Main results of the paper state the singularity (w.r.t. the Lebesgue measure) of the dis-
tribution of a random variable with i.i.d. increments of symbols of the restricted Oppenheim
expansion. General non-i.i.d. case is also studied and sufficient conditions for the singularity
of the corresponding probability distributions are found.

Keywords Restricted Oppenheim expansion, singular probability distributions, metric
theory of ROE, Sylvester expansion
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1 Introduction

Singularly continuous probability measures were studied during almost all XX cen-
tury and there are a lot of open problems related to them. The fractal and multifractal
approaches to the study of such measures are known to be extremely useful (see, e.g.,
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[7, 12, 39] and references therein). The study of fractal properties of different fam-
ilies of singularly continuous probability measures (see, e.g., [7, 16, 26, 28, 27, 29,
31, 38, 1, 42] and references therein) can be used to solve non-trivial problems in the
metric number theory ([8, 9, 5, 4, 10, 30, 21]), in the theory of dynamical systems
and DP-transformations and in fractal analysis ([6, 3, 11, 19, 18, 17, 22, 41, 43]).

On the other hand, for many families of probability measures the problem “sin-
gularity vs absolute continuity” is extremely complicated even for the so-called prob-
ability distributions of the Jessen–Wintner type, i.e., distributions of random vari-
ables which are sums of almost surely convergent series of independent discretely
distributed random variables (such probability distributions are of pure type [23]).
The Lévy theorem [25] gives necessary and sufficient conditions for such measures
to be discrete resp. continuous, and the main problem is to find sharp conditions for
absolute resp. singular continuity. Infinite Bernoulli convolutions make an important
subclass of such measures (see, e.g., [2, 32, 34, 36, 35, 37] and references therein).
Another wide family of probability distributions where the problem “singularity vs
absolute continuity” is still open consists of probability distributions of the following
form:

ξ = ΔF
ξ1ξ2...ξn...,

where ξn are independent symbols of some generalized F -expansion over some al-
phabet A. Random variables with independent symbols of s-adic expansions, contin-
ued fraction expansions, the Lüroth expansion, the Sylvester and Engel expansions
are among them. This paper is devoted to the development of probabilistic theory of
Oppenheim expansions of real numbers which contains many important expansions
as rather special cases. Let us mention that many authors studied normal properties
of real numbers in terms of digits of their Oppenheim expansion and the Hausdorff
dimension of corresponding exceptional sets (see, e.g., [13, 15, 44, 45, 24]). In Sec-
tion 2 we develop approach which has been invented by G. Torbin to study normal
properties of the Ostrogradsky–Sierpinski–Pierce expansion [40] and get general re-
sults on normal properties of Oppenheim expansions. Based on these results in the
last section of the paper we show that singularity is typical for the family of probabil-
ity measures with independent symbols of ROE expansions.

2 On metric theory of the restricted Oppenheim expansion

It is known ([14]) that any real number x ∈ (0, 1) can be represented in the form of
the Oppenheim expansion

x ∼ 1

d1
+ a1

b1

1

d2
+ · · · + a1a2 · . . . · an

b1b2 · . . . · bn

1

dn+1
+ · · · (1)

where an = an(d1, . . . , dn), bn = bn(d1, . . . , dn) are positive integer valued func-
tions and the denominators dn are determined by the following procedure: for a given
x we define the sequences {xn} and {dn} via

x1 := x;
dn =

[
1

xn

]
+ 1;
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xn+1 := bn

an

(
xn − 1

dn

)
. (2)

A sufficient condition for a series on the right-hand side in (1) to be the expansion
of its sum is:

dn+1 ≥ an

bn

dn(dn − 1) + 1.

We call the expansion (1) the restricted Oppenheim expansion (ROE) of x if an

and bn depend only on the last denominator dn and if the function

hn(j) := an(j)

bn(j)
j (j − 1) (3)

is integer valued.
Let us consider some examples of the restricted Oppenheim expansions.

Example 1. Let an = 1, bn = dn (n = 1, 2, . . .). Then the expansion (1) obtained by
the algorithm (2) is the well-known Engel expansion of x:

x = 1

d1
+ 1

d1d2
+ · · · + 1

d1d2 . . . dn

+ · · · ,

where dn+1 ≥ dn.

Example 2. Let an = bn = 1 (or an = bn = const) (n = 1, 2, . . .). Then the
expansion (1) obtained by the algorithm (2) is the well-known Sylvester expansion of
x:

x = 1

d1
+ 1

d2
+ · · · + 1

dn

+ · · · ,

where dn+1 ≥ dn(dn − 1) + 1.

Example 3. Let an = 1, bn = dn(dn − 1). In this case we obtain the Lüroth series
for a number x:

x = 1

d1
+ 1

d1(d1 − 1)d2
+ · · · + 1

d1(d1 − 1) . . . dn(dn − 1)dn+1
+ · · · ,

where dn+1 ≥ 2.

Let us mention that metric, dimensional and probabilistic theories of Oppenheim
series are not sufficiently developed. In fact, as evidenced by recent works and thesis
in the field ([46, 20, 33]), even such partial cases of Oppenheim expansions as the
Lüroth series, the Engel and Sylvester series generate a number of challenges for the
metric and probabilistic number theory. The main purpose of this article is to develop
some general methods of the metric theory of numbers and Oppenheim expansions
and to show their effectiveness in the study of Lebesgue structures of distributions of
random variables with independent symbols of Oppenheim expansions.

Choose the probability space (Ω,A, P ), with Ω = (0, 1), A the set of Lebesgue
measurable subsets of (0, 1) and the Lebesgue measure as P .

Let �ROE
j1j2...jn

:= {x : d1(x) = j1, d2(x) = j2, . . . , dn(x) = jn} be the cylinder of
rank n with base (j1, j2, . . . , jn).
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Lemma 1. ([14]) Let x be the random variable, which is uniformly distributed on the
unit interval and let dj := dj (x). Then

P(d1 = j1, . . . , dn = jn) = a1a2 · . . . · an−1

b1b2 · . . . · bn−1

1

jn(jn − 1)

where ai = ai(ji), bi = bi(ji) (i = 1, 2, . . . , n − 1).

Theorem 1. ([14]) The sequence dn (n = 1, 2, . . .) forms the Markov chain

P(d1 = j) = 1

j (j − 1)
;

P(dn = k|dn−1 = j) = hn−1(j)

k(k − 1)
, k > hn−1(j);

and 0 otherwise.

Therefore, we get the following properties of cylinders:

1) �ROE
j1j2...jn−1

=
∞⋃
i=1

�ROE
j1j2...jn−1i

.

2) sup�ROE
j1j2...jn

= inf �ROE
j1j2...jn−1(jn−1).

3) inf �ROE
j1j2...jn

= 1
j1

+ a1
b1

1
j2

+ · · · + a1a2...an

b1b2...bn

1
jn

,

sup�ROE
j1j2...jn

= 1
j1

+ a1
b1

1
j2

+ · · · + a1a2...an−1
b1b2...bn−1

1
jn−1 .

4) |�ROE
j1j2...jn

| = a1a2...an−1
b1b2...bn−1

1
jn(jn−1)

.

If the first k symbols of ROE are fixed, then (k+1)-st symbol of ROE cannot take
values 2, 3, . . . ,

ak

bk
dk(dk − 1), ∀k ∈ N.

Each of the cylinders of ROE can be uniquely rewritten in terms of the difference
restricted Oppenheim expansion (ROE):

α1 = d1 − 1;
αk+1 = dk+1 − ak

bk

dk(dk − 1).

Then series (1) can be rewritten as follows:

x = 1

α1 + 1
+ a1

b1

1
a1
b1

d1(d1 − 1) + α2
+ a1a2

b1b2

1
a2
b2

d2(d2 − 1) + α3
+· · · =: ΔROE

α1α2...αn....

where αk ∈ {1, 2, 3, . . .}.
Theorem 2. If there exists a sequence lk , such that ∀x ∈ [0, 1]:

bk−1

ak−1

1

dk−1(dk−1 − 1)
< lk



On singularity of distribution of Oppenheim expansions 277

and series ∞∑
k=1

lk < +∞,

then for any digit i0 almost all (with respect to the Lebesgue measure) real numbers
x ∈ [0, 1] contain symbol i0 only finitely many times in ROE.

Proof. Let Ni(x) be a number of symbols “i” in ROE of number x. Let us prove
that the Lebesgue measure of the set Ai = {x : Ni(x) = ∞} is equal to 0 for all
i ∈ N.

Consider the set

�̄k
i = {

x : x = �ROE
α1α2...αk−1iαk+1...

, αj ∈ N, j 	= k
}
.

From the definition of the set �̄k
i and properties of cylindrical sets it follows that

�̄k
i =

∞⋃
α1=1

· · ·
∞⋃

αk−1=1

�ROE
α1...αk−1i

Let us consider the following ratio:

|�ROE
α1...αk−1i

|
|�ROE

α1...αk−1
|

=
|�ROE

d1...dk−1(
ak−1
bk−1

dk−1(dk−1−1)+i)
|

|�ROE
d1...dk−1

|
= a1 . . . ak−1

b1 . . . bk−1
· 1

(
ak−1
bk−1

dk−1(dk−1 − 1) + i)(
ak−1
bk−1

dk−1(dk−1 − 1) + i − 1)

: a1 . . . ak−2

b1 . . . bk−2
· 1

dk−1(dk−1 − 1)

≤ ak−1

bk−1
· dk−1(dk−1 − 1)

ak−1
bk−1

dk−1(dk−1 − 1)
· 1

ak−1
bk−1

dk−1(dk−1 − 1)
= bk−1

ak−1
· 1

dk−1(dk−1 − 1)
< lk

Then

λ
(�̄k

i

) =
∞∑

α1=1

· · ·
∞∑

αk=1

∣∣�ROE
α1...αk−1i

∣∣ ≤ lk.

It is clear, that the set Ai is the upper limit of the sequence of sets {�̄k
i }, i.e.,

Ai = lim sup
k→∞

�̄k
i =

∞⋂
m=1

( ∞⋃
k=m

�̄k
i

)
.

Since
∞∑

k=1

λ
(�̄k

i

) ≤
∞∑

k=1

bk−1

ak−1

1

dk−1(dk−1 − 1)
≤

∞∑
k=1

lk < +∞,
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from the Borel–Cantelli Lemma it follows that

λ(Ai) = 0, ∀i ∈ N.

Therefore,
λ(Āi) = 1, ∀i ∈ N.

Let

Ā =
∞⋂
i=1

Āi .

It is clear that λ(Ā) = 1, which proves the theorem.

Example 4. Consider the Sylvester series:

d1 ∈ {2, 3, . . .},
dk+1 = dk(dk − 1) + i, i ∈ {1, 2, 3, . . .}.

If d1 = 2, then the minimal admissible value of d2 is 3. Therefore

dk+1 ≥ dk(dk − 1) + 1 ≥ (
dk−1(dk−1 − 1) + 1

)(
dk−1(dk−1 − 1) + 1

)
≥ (

dk−1(dk−1 − 1)
)2 + 1

≥ ((
dk−2(dk−2 − 1) + 1

)(
dk−2(dk−2 − 1) + 1 − 1

))2 + 1

≥ (
dk−2(dk−2 − 1)

)4 ≥ (
dk−3(dk−3 − 1)

)23 ≥ · · ·
≥ (

dk−(k−2)(dk−(k−2) − 1)
)2k−2 = (

d2(d2 − 1)
)2k−2 ≥ 3 · 22k−2

.

So for the Sylvester series:

1

dk−1(dk−1 − 1)
<

1

3 · 22k−4 · (3 · 22k−4
)

=: lk.

It is clear that ∞∑
k=1

lk < ∞.

Therefore, for λ-almost all x ∈ [0, 1] their difference Sylvester expansion contain
arbitrary digit i only finitely many times.

Example 5. Consider the case where an = dn, bn = 1. Then

dn+1 ≥ dn · dn(dn − 1) + 1 ≥ d2
n ≥ (

d2
n−1

)2

= d4
n−1 ≥ d8

n−2 ≥ d24

n−3 ≥ · · · ≥ d2n

n−(n−1) = d2n

1 ≥ 22n

.

So for this case
1

dk−1(dk−1 − 1)
<

1

22k
=: lk.

Then,
∞∑

k=1

lk < ∞.

So for λ-almost all x ∈ [0, 1] the difference expansion contains arbitrary digit i

only finitely many times.



On singularity of distribution of Oppenheim expansions 279

3 On singularity of distribution of random variables with independent symbols
of the difference restricted Oppenheim expansion

Definition 1. A probability measure μξ of a random variable ξ is said to be singularly
continuous (with respect to the Lebesgue measure) if μξ is a continuous probability
measure and there exists a set E, such that λ(E) = 0 and μξ (E) = 1.

Let x = ΔROE
α1(x)α2(x)...αn(x)... be ROE of real numbers, let ξ1, ξ2, . . . , ξk, . . . be a

sequence of independent random variables taking values 1, 2, . . . , n, . . . with proba-
bilities p1k, p2k, . . . , pnk, . . . correspondingly, and let

ξ = ΔROE
ξ1ξ2...ξn...

be a random variables with independent ROE-symbols.

Theorem 3. Let assumptions of Theorem 2 hold. If there exists a digit i0 such that
∞∑

k=1
pi0k = +∞, then the probability measure μξ is singular with respect to the

Lebesgue measure.

Proof. Consider sets
�̄n

i0
= {

x : αn(x) = i0
}

and
Ai0 = {

x : Ni0(x) = +∞}
.

It is clear, that Ai0 = lim
n→∞ �̄n

i0
.

From the definition of �̄n
i0

it follows that μξ (�̄n
i0
) = pi0n.

Since the random variables ξ1, ξ2, . . . , ξn, . . . are independent, we conclude that

μξ

(�̄k1
i0

∩ �̄k2
i0

∩ · · · ∩ �̄ks

i0

)
= μξ

({
x : αk1(x) = i0, αk2(x) = i0, . . . , αks (x) = i0

})
= μξ

({
x : αk1(x) = i0

}) · μξ

({
x : αk2(x) = i0

}) · . . . · μξ

({
x : αks (x) = i0

})
= pi0k1 · pi0k2 · . . . · pi0ks .

So, events �̄1
i0
, �̄2

i0
, . . . , �̄n

i0
, . . . are independent with respect to measure μξ .

Since
∞∑

k=1
pi0k = +∞ and {�̄n

i0
} is a sequence of independent events, from the

Borel–Cantelli Lemma it follows that

μξ(Ai0) = 1.

Let λ be the Lebesgue measure. Events �̄1
i0
, �̄2

i0
, . . . , �̄n

i0
, . . ., in general, are not

independent w.r.t. the Lebesgue measure. We estimate the Lebesgue measure of the
set �̄n

i0
:

λ
(�̄n

i0

) = λ
({

x : αn(x) = i0
})
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=
∞∑

α1(x)=1

∞∑
α2(x)=1

· · ·
∞∑

αn−1=1

∣∣ΔROE
α1(x)α2(x)...αn−1(x)i0

∣∣

=
∞∑

α1(x)=1

∞∑
α2(x)=1

· · ·
∞∑

αn−1=1

|ΔROE
α1(x)α2(x)...αn−1(x)i0

|
|ΔROE

α1(x)α2(x)...αn−1(x)|
· ∣∣ΔROE

α1(x)α2(x)...αn−1(x)

∣∣

≤ ln(i0) ·
∞∑

α1(x)=1

∞∑
α2(x)=1

· · ·
∞∑

αn−1=1

∣∣ΔROE
α1(x)α2(x)...αn−1(x)

∣∣ = ln · 1,

where ln are defined in Theorem 2. Therefore,

∞∑
n=1

λ
(�̄n

i0

) ≤
∞∑

n=1

ln < +∞.

So by the Borel–Cantelli Lemma, λ(Ai0) = 0, i.e. for λ-almost all x ∈ [0, 1] their
ROE contains arbitrary digit i only finitely many times.

Hence λ(Ai0) = 0, and μξ (Ai0) = 1. So, probability measure μξ is singular with
respect to the Lebesgue measure

Theorem 4. Let assumptions of Theorem 2 hold. If ξk are independent and identi-
cally distributed random variables, then the probability measure μξ is singular with
respect to the Lebesgue measure.

Proof. If ξ1, ξ2, . . . , ξn, . . . are independent and identically distributed random vari-
ables, then pik = pi .

Since
∞∑
i=1

pi = 1, it is clear that there exists a number i0 such, that: pi0 > 0.

Therefore ∞∑
k=1

pi0k = +∞,

and the singularity of μξ follows directly from Theorem 3.

Corollary 1. Let

x = ΔS
α1(x)α2(x)...αn(x)...

be the difference version of the Sylvester expansion (S-expansion) and let

ξ = ΔS
ξ1ξ2...ξn...

be the random variable with independent symbols of S-expansion.

If there exists a digit i0 such that
∞∑

k=1
pi0k = +∞, then the probability measure

μξ is singular with respect to the Lebesgue measure.
In particular, the distribution of the random variable with independent identically

distributed symbols of S-expansion is singular w.r.t. the Lebesgue measure.
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