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Abstract In this paper we provide a systematic exposition of basic properties of integrated
distribution and quantile functions. We define these transforms in such a way that they charac-
terize any probability distribution on the real line and are Fenchel conjugates of each other. We
show that uniform integrability, weak convergence and tightness admit a convenient character-
ization in terms of integrated quantile functions. As an application we demonstrate how some
basic results of the theory of comparison of binary statistical experiments can be deduced using
integrated quantile functions. Finally, we extend the area of application of the Chacon–Walsh
construction in the Skorokhod embedding problem.
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1 Introduction

Integrated distribution and quantile functions or simple transformations of them play
an important role in probability theory, mathematical statistics, and their applications
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such as insurance, finance, economics etc. They frequently appear in the literature,
often under different names. Moreover, in many occasions they are defined under ad-
ditional assumption of integrability of a random variable or at least integrability of the
positive or the negative part of a variable. Let us point out only few references. For a
random variable X, let FX be the distribution function of X and qX any quantile func-
tion of X. Examples of integrated distribution functions or their simple modifications
are:

• The function

ΨX(x) :=
∫ x

−∞
FX(t) dt, x ∈ R, (1)

considered in [11].

• The integrated survival function

HX(x) :=
∫ +∞

x

(
1 − FX(t)

)
dt, x ∈ R, (2)

of X, also called the stop-loss transform, see, e.g., [19, 20].

• The potential function

UX(x) := −E|x − X|, x ∈ R, (3)

of X, see, e.g., [4, 6].

These transforms characterize the distribution of X only if the expectations EX−, or
EX+, or E|X| respectively are finite; otherwise, the transforms equal +∞ or −∞
identically and do not allow to identify the distribution of X.

The examples of integrated quantile functions or their simple transformations are:

• The absolute Lorenz curve

ALX(u) :=
∫ u

0
qX(s) ds, u ∈ [0, 1], (4)

see, e.g., [21] and the references therein.

• The Hardy–Littlewood maximal function

HLX(u) := 1

1 − u

∫ 1

u

qX(s) ds, u ∈ [0, 1), (5)

of X, see [14].

• The Conditional Value at Risk

CV@RX(u) := 1

u

∫ u

0
qX(s) ds, u ∈ (0, 1], (6)

see, e.g., [22, 23], also called the Average Value at Risk [11], or the expected
shortfall, or the expected tail loss.
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Again, these transforms characterize the distribution of X if either E[X−] < ∞ or
E[X+] < ∞, otherwise, they are equal to +∞ or −∞ identically.

The main goal of this paper is a systematic exposition of basic properties of in-
tegrated distribution and quantile functions. In particular, we define the integrated
distribution and quantile functions for any random variable X in such a way that each
one of these functions determines uniquely the distribution of X. Further, we show
that such important notions of probability theory as uniform integrability, weak con-
vergence and tightness can be characterized in terms of integrated quantile functions
(see Section 3). In Section 4 we show how some basic results of the theory of com-
parison of binary statistical experiments can be deduced using our results in previous
two sections. Finally, in Section 5 we extend the area of application of the Chacon–
Walsh construction in the Skorokhod embedding problem with the help of integrated
quantile functions.

One of the key points of our approach is that we define integrated distribution
and quantile functions as Fenchel conjugates of each other. This is due to the fact
that their derivatives, distribution functions and quantile functions, are generalized
inverses (see, e. g., [8, 11]). This convex duality result can be found in [21] and [11,
Lemma A.26], and constitutes implicitly one of two main results in [22, 23].

Let us note that we consider only univariate distributions in this paper. However,
it is reasonable to mention a possible generalization to the multidimensional case
based on ideas from optimal transport. The integrated quantile function of a random
variable X, as it is defined in our paper, is a convex function whose gradient pushes
forward the uniform distribution on (0, 1) into the distribution of X; moreover, the
integrated distribution function is the Fenchel transform of the integrated quantile
function and its gradient pushes forward the distribution of X into the uniform distri-
bution on (0, 1) if the distribution of X is continuous. It the multidimensional case
the existence of such functions follows from the McCann theorem [18]. Namely, if μ

is the distribution on Rd , then there exists a (unique up to an additive constant) convex
function V whose gradient pushes forward the uniform distribution on the unit cube
(or, say, the unit ball) in Rd into μ. Additionally, if μ vanishes on Borel subsets of
Hausdorff dimension d − 1, then the Fenchel transform V ∗ of V pushes forward μ

to the corresponding uniform distribution. We refer to [3, 5, 9] and [13] for recent
advances in this area.

It is more convenient for us to speak about random variables rather than distri-
butions. However, if a probability space is not specified, the symbols P and E for
probability and expectation enter into consideration only via distributions of random
variables and may refer to different probability spaces. This allows us to replace oc-
casionally random variables by their distributions in the notation.

For the reader’s convenience, we recall some terminology and elementary facts
concerning convex functions of one real variable. A convex function f : R → R ∪
{+∞} is proper if its effective domain

dom f := {
x ∈ R : f (x) < +∞}

is not empty. The subdifferential ∂f (x) of f at a point x is defined by

∂f (x) = {
u ∈ R : f (y) ≥ f (x) + u(y − x) for every y ∈ R

}
.
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If f is a proper convex function and x is an interior point of dom f , then ∂f (x) =
[f ′−(x), f ′+(x)], where f ′−(x) and f ′+(x) are the left and right derivatives of f at x

respectively. The conjugate of f , or the Fenchel transform, is the function f ∗ on R
defined by

f ∗(u) = sup
x∈R

[
xu − f (x)

]
.

The conjugate function is lower semicontinuous and convex. The Fenchel–Moreau
theorem says that if f is a proper lower semicontinuous convex function, then f is
the conjugate of f ∗, i.e.

f (x) = sup
u∈R

[
xu − f ∗(u)

]
, x ∈ R;

moreover, for x, u ∈ R,

u ∈ ∂f (x) ⇐⇒ x ∈ ∂f ∗(u) ⇐⇒ f (x) + f ∗(u) = xu.

2 Integrated distribution and quantile functions: definitions and main proper-
ties

2.1 Definition and properties of integrated distribution functions

The distribution function FX of a random variable X given on a probability space
(Ω, F , P) is defined by FX(x) = P(X ≤ x), x ∈ R. Since FX is bounded, for any
choice of x0 ∈ R, the integral

∫ x

x0
FX(t) dt is defined and finite for all x ∈ R.2 In

contrast to this case, the function ΨX in (1) corresponding to the choice x0 = −∞,
takes value +∞ identically if E[X−] = ∞.

Definition 1. The integrated distribution function of a random variable X is defined
by

JX(x) :=
∫ x

0
FX(t) dt, x ∈ R.

Theorem 1. An integrated distribution function JX has the following properties:

(i) JX(0) = 0.

(ii) JX is convex, increasing and finite everywhere on R.

(iii) for a < b,
JX(b) − JX(a) = E

[
(b − X)+ − (X − a)−

]
, (7)

in particular, for x ∈ R,

JX(x) = E
[
(x − X)+ − X−] = E

[
(X − x)+ − X+ + x

]
. (8)

(iv) lim
x→−∞ JX(x) = −E[X−] and lim

x→+∞(x − JX(x)) = E[X+].

2Throughout the paper, if b < a, by convention
∫ b
a f (x) dx := − ∫ a

b f (x) dx.
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(v) lim
x→−∞

JX(x)
x

= 0 and lim
x→+∞

JX(x)
x

= 1.

(vi) The subdifferential of JX satisfies

∂JX(x) = [
FX(x − 0), FX(x)

]
, x ∈ R, (9)

in particular, (JX)′−(x) = FX(x − 0) and (JX)′+(x) = FX(x).

(vii) J−X(x) = x + JX(−x) for all x ∈ R.

It is clear from (vi), that the integrated distribution function uniquely determines
the distribution.

Proof. It is evident that (i) holds and JX is finite and increasing. For a < b, we have

FX(a)(b − a) ≤ JX(b) − JX(a) =
∫ b

a

FX(t) dt ≤ FX(b − 0)(b − a). (10)

It follows that, for any x, y ∈ R,

JX(y) ≥ JX(x) + p(y − x),

if p ∈ [FX(x − 0), FX(x)]. Now the convexity of JX follows, which, in turn, implies
(vi).

Next, by Fubini’s theorem, for a < b,∫ b

a

FX(t) dt =
∫ b

a

E[1{X≤t}] dt = E
[∫ b

a

1{X≤t} dt

]
= E

[
(b − X)+ − (X − a)−

]
.

Thus, we have proved (7). The second equality in (8) is trivial, and the first one
follows from (7) if we put a = 0 or b = 0 depending on the sign of x.

Let us prove (iv). The function (x − X)+ − X− is increasing in x, hence E[(x −
X)+ − X−] → −E[X−] as x → −∞ by the monotone convergence theorem. This
proves the first equality in (iv). Similarly, x − (x − X)+ + X− is increasing in x,
hence E[x − (x − X)+ + X−] → E[X+] as x → +∞ by the monotone convergence
theorem.

Finally, (v) and (vii) follow from (10) and (8) respectively.

Corollary 1. If X is an integrable random variable, then, for any x ∈ R,

ΨX(x) = JX(x) + E
[
X−]

,

HX(x) = JX(x) + E
[
X+] − x,

UX(x) = x − E|X| − 2JX(x),

where ΨX, HX, and UX are defined in (1)–(3), in particular,

ΨX(x) + HX(x) = −UX(x).
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Fig. 1. A typical graph of an integrated distribution function if the expectations E[X−] and
E[X+] are finite

Theorem 2. If J : R → R, J (0) = 0, is a convex function satisfying

lim
x→−∞

J (x)

x
= 0 and lim

x→+∞
J (x)

x
= 1,

then there exists on some probability space a random variable X for which JX = J .

Proof. Since J is convex and finite everywhere on the line, it has the right-hand
derivative at each point, and J (x) = ∫ x

0 J ′+(t) dt . Moreover, similarly to the proof of

(v) in Theorem 1, limx→−∞ J ′+(x) = limx→−∞ J (x)
x

= 0 and limx→+∞ J ′+(x) =
limx→+∞ J (x)

x
= 1. Put F(x) := J ′+(x). Due to convexity of J , F is an increasing

and right-continuous function. So we can conclude, that F is the distribution function
of some random variable X and JX = J .

2.2 Definition and properties of integrated quantile functions
We call every function qX : (0, 1) → R satisfying

FX

(
qX(u) − 0

) ≤ u ≤ FX

(
qX(u)

)
, u ∈ (0, 1),

a quantile function of a random variable X. The functions qL
X and qR

X defined by

qL
X(u) := inf

{
x ∈ R : FX(x) ≥ u

}
,

qR
X(u) := inf

{
x ∈ R : FX(x) > u

}
,

are called the lower (left) and upper (right) quantile functions of X. Of course, the
lower and upper quantile functions of X are quantile functions of X, and we always
have

qL
X(u) ≤ qX(u) ≤ qR

X(u), u ∈ (0, 1),

for any quantile function qX.
It follows directly from the definitions that, for any x ∈ R and u ∈ (0, 1),

qL
X(u) ≤ x ⇔ u ≤ FX(x), (11)

qR
X(u) ≥ x ⇔ u ≥ FX(x − 0). (12)

See, e. g., [8, 11] for more information on quantile functions (generalized inverses).
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Definition 2. The Fenchel transform of the integrated distribution function of a ran-
dom variable X

KX(u) = sup
x∈R

{
xu − JX(x)

}
, u ∈ R, (13)

is called the integrated quantile function of X.

This definition is motivated by the fact mentioned in the introduction, that a func-
tion whose derivative is a quantile function must coincide with the Fenchel transform
of JX up to an additive constant. The next theorem clarifies this point.

Theorem 3. An integrated quantile function KX has the following properties :

(i) The function KX is convex and lower semicontinuous. It takes finite values on
(0, 1) and equals +∞ outside [0, 1].

(ii) The Fenchel transform of KX is JX, i. e. for any x ∈ R,

JX(x) = sup
u∈R

{
xu − KX(u)

}
. (14)

(iii) minu∈R KX(u) = 0, {u ∈ R : KX(u) = 0} = [FX(0 − 0), FX(0)].
(iv) for every u ∈ [0, 1],

KX(u) =
∫ u

u0

qX(s) ds, (15)

where u0 is any zero of KX.

(v) KX(0) = E[X−] and KX(1) = E[X+].
(vi) The subdifferential of KX satisfies

∂KX(u) = [
qL
X(u), qR

X(u)
]
, u ∈ (0, 1), (16)

in particular, (KX)′−(u) = qL
X(u) and (KX)′+(x) = qR

X(u).

(vii) K−X(u) = KX(1 − u) for all u ∈ [0, 1].
It is clear from (ii) and the similar remark after Theorem 1 that the integrated

quantile function uniquely determines the distribution.

Proof. Since JX is a proper convex continuous function, it follows from the definition
of KX and the Fenchel–Moreau theorem that KX is convex and lower semicontinuous,
(14) holds, and for all x, u ∈ R

u ∈ ∂JX(x) ⇔ x ∈ ∂KX(u) ⇔ FX(x − 0) ≤ u ≤ FX(x), (17)

where the last equivalence follows from (9). In particular,

∂KX(u) = ∅, if u /∈ [0, 1],
and, for u ∈ (0, 1),

x ∈ ∂KX(u) ⇔ qL
X(u) ≤ x ≤ qR

X(u),

due to (11) and (12). Thus, we have proved (i), (ii) and (vi).
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Fig. 2. A typical graph of an integrated quantile function

Putting x = 0 in (14) and (17), we get infu∈R KX(u) = 0 and this infimum is
attained at u if and only if u ∈ [FX(0 − 0), FX(0)]. This constitutes assertion (iii).
Now (iv) follows from preceding statements.

Statement (v) follows from the definition of KX and Theorem 1 (iv):

KX(0) = − inf
x∈R

JX(x) = − lim
x→−∞ JX(x) = E

[
X−]

,

KX(1) = sup
x∈R

(
x − JX(x)

) = lim
x→+∞

(
x − JX(x)

) = E
[
X+]

.

Finally, (vii) follows from the definition of KX and Theorem 1 (vii).

Corollary 2. For any random variable X,

KX

(
FX(x)

) = xFX(x) − JX(x), x ∈ R.

Proof. Put u := FX(x) and g(y) := JX(y) − yu, y ∈ R. According to (9), ∂g(y) =
[FX(y − 0) − u, FX(y) − u], in particular, 0 ∈ ∂g(y) if y = x. This means that
the function g attains its minimum at x and, hence, we have KX(u) = supy∈R{yu −
JX(y)} = xu − JX(x).

Theorem 4. If a convex lower semicontinuous function K : R → R+∪{+∞} satisfies

(0, 1) ⊆ dom K ⊆ [0, 1]
and there is u0 ∈ [0, 1] such that K(u0) = 0, then there exists on some probability
space a random variable X for which KX = K .

Proof. Under our assumptions

K(u) =
∫ u

u0

q(s) ds, u ∈ [0, 1],

where q(u) = K ′−(u), u ∈ (0, 1), is increasing and left continuous. Let us define a
probability space (Ω, F , P) as follows: Ω = (0, 1), F is the Borel σ -field and P is
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the Lebesgue measure. Put X(ω) := q(ω). Now if G(x) := inf{u ∈ (0, 1) : q(u) >

x}, then it is easy to verify that q(u) ≤ x ⇔ G(x) ≥ u, cf. (11). It follows that G is
the distribution function of X and, hence, q = qL

X on (0, 1). This means that the left-
hand derivative of K and KX coincide on (0, 1). In addition, their minimums over
this interval are equal to zero. Therefore, K = KX on (0, 1) and, hence, everywhere
on R.

Remark 1. An alternative way to prove Theorem 4 is to introduce the Fenchel trans-
form J of K and to show that J satisfies the assumptions of Theorem 2. However,
our proof yields not only a characterization statement of Theorem 4 but also an ex-
plicit representation of a random variable with a given integrated quantile function.
Of course, this representation (namely, of a random variable with given distribution as
its quantile function with respect to the Lebesgue measure on (0, 1)) is well known.

It is convenient to introduce shifted integrated quantile functions:

K[0]
X (u) := KX(u) − KX(0), u ∈ [0, 1], if KX(0) = E

[
X−]

< ∞,

K[1]
X (u) := KX(u) − KX(1), u ∈ [0, 1], if KX(1) = E

[
X+]

< ∞.

Now we can express the functions defined in (4)–(6) in terms of shifted integrated
quantile functions. If E[X−] < ∞, then the absolute Lorenz curve coincides with
K[0]

X :

ALX(u) = K[0]
X (u), u ∈ [0, 1].

Since ΨX is obtained from JX by adding a constant E[X−] = KX(0) by Corollary 1,
the absolute Lorenz curve is the Fenchel transform of ΨX:

ALX(u) = sup
x∈R

{
xu − ΨX(x)

}
, u ∈ [0, 1].

The Conditional Value at Risk satisfies

CV@RX(u) = 1

u
K[0]

X (u) = sup
x∈R

{
x − ΨX(x)/u

}
, u ∈ (0, 1].

The Hardy–Littlewood maximal function satisfies

HLX(u) = 1

u − 1
K[1]

X (u) = 1

u − 1
K[0]

−X(1−u) = − CV@R−X(1−u), u ∈ [0, 1).

2.3 Convex orders

Let us recall the definitions of convex orders in the univariate case.
For an arbitrary function ψ : R → R+, define Cψ as the space of all continuous

functions f : R → R such that

sup
x∈R

|f (x)|
1 + ψ(x)

< ∞.

Let X and Y be random variables. We say that
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• X is less than Y in convex order (X ≤cx Y ) if E|X| < ∞, E|Y | < ∞, and
E[ϕ(X)] ≤ E[ϕ(Y )] for any convex function ϕ ∈ C|x|;

• X is less than Y in increasing convex order (X ≤icx Y ) if E[X+] < ∞,
E[Y+] < ∞, and E[ϕ(X)] ≤ E[ϕ(Y )] for any increasing convex function
ϕ ∈ Cx+ ;

• X is less than Y in decreasing convex order (X ≤decx Y ) if E[X−] < ∞,
E[Y−] < ∞, and E[ϕ(X)] ≤ E[ϕ(Y )] for any decreasing convex function
ϕ ∈ Cx− .

It is trivial that X ≤icx Y if and only if −X ≤decx −Y . Also it is easy to see that
X ≤cx Y if and only if X ≤icx Y and X ≤decx Y .

The following theorem is well known. We provide its proof which reduces to the
duality between integrated distribution and quantile functions.

Theorem 5. Let X and Y be random variables.

(i) If E|X| < ∞, E|Y | < ∞, then the following statements are equivalent:

(a) X ≤cx Y ;

(b) K[1]
X (u) ≥ K[1]

Y (u) for all u ∈ [0, 1] and K[1]
X (0) = K[1]

Y (0);

(c) K[0]
X (u) ≥ K[0]

Y (u) for all u ∈ [0, 1] and K[0]
X (1) = K[0]

Y (1);

(d) K[1]
X (u) ≥ K[1]

Y (u) and K[0]
X (u) ≥ K[0]

Y (u) for all u ∈ [0, 1].
(ii) X ≤icx Y if and only if E[X+] < ∞, E[Y+] < ∞, and K[1]

X (u) ≥ K[1]
Y (u) for

all u ∈ [0, 1];
(iii) X ≤decx Y if and only if E[X−] < ∞, E[Y−] < ∞, and K[0]

X (u) ≥ K[0]
Y (u) for

all u ∈ [0, 1].
Proof. First, let us prove (ii). It is well known (see, e. g., [24]) that X ≤icx Y if and
only if E[X+] < ∞, E[Y+] < ∞, and E[(X − x)+] ≤ E[(Y − x)+] for all x ∈ R.
Taking (8) into account, the last condition can be rewritten as

JX(x) + E
[
X+] ≤ JY (x) + E

[
Y+]

, x ∈ R,

which in turn, is equivalent to

KX(u) − E
[
X+] ≥ KY (u) − E

[
Y+]

, u ∈ [0, 1],
by the definition of integrated quantile function. The claim follows.

Now, (iii) follows from (ii) and the first part of the remark before Theorem 5.
Now, the second part of this remark shows equivalence (a) ⇔ (d) in (i).

Next, the equalities in (b) and (c) are both equivalent to E[X] = E[Y ]. On the
other hand, the inequalities in (d) reduce to −E[X] ≥ −E[Y ] and E[X] ≥ E[Y ] for
u = 0 and u = 1 respectively. It follows that (d) implies (b) and (c). Finally, it is
straightforward to check that (b) and (c) are equivalent and, hence, imply (d).

Further properties of convex orders see, e.g., in [20, 24].
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Fig. 3. Graphs of shifted integrated quantile functions K[1]
X

and K[1]
Y

in Example 1

2.4 Examples

In this subsection we demonstrate how the developed techniques can be used to de-
rive two elementary well-known inequalities, see [10, p. 152]. This approach allows
us to find the distributions at which the corresponding extrema are attained. So the
inequalities obtained in this way are sharp.

Example 1. Let X be a random variable with zero mean and finite variance D(X) =
σ 2. It is required to find a sharp upper bound for the probability P(X ≥ t), where t

is a fixed positive number.
We solve a converse problem. Namely, let p := P(X ≥ t) be fixed. Our purpose

is to find a sharp lower bound for variances D(X) = E[X2] over all random variables
X such that E[X] = 0, and P(X ≥ t) = p.

The above class of distributions has a minimal element with respect to the convex
order. Indeed, let Y be a discrete random variable with P(Y = t) = p and P(Y =
− tp

1−p
) = 1 − p. It is clear that E[Y ] = 0 and P(Y ≥ t) = p. If X is another random

variable with these properties, then K[1]
X (u) ≤ K[1]

Y (u) for all u ∈ [0, 1]. Indeed,

K[1]
X (0) = K[1]

Y (0) = 0 and the graph of K[1]
Y consists of two straight segments, see

Fig. 3. Since P(X ≥ t) = p, qR
X(u) ≥ t for u ∈ [1 − p, 1]. In particular,

K[1]
X (1 − p) = −

∫ 1

1−p

qR
X(s) ds ≤ −pt = K[1]

Y (1 − p).

Due to convexity of integrated quantile functions, this implies K[1]
X (u) ≤ K[1]

Y (u) for
all u ∈ [0, 1], see Fig. 3. Hence, X ≥cx Y by Theorem 5 (i). Therefore, E[f (X)] ≥
E[f (Y )] for any convex function f . In particular, σ 2 = E[X2] ≥ E[Y 2] = t2p

1−p
.

Resolving this inequality with respect to p = P(X ≥ t), we obtain the required
upper bound

P(X ≥ t) ≤ σ 2

σ 2 + t2 . (18)

To show that the estimate in (18) is sharp it is enough to put p = σ 2

σ 2+t2 in the

definition of a random variable Y and to check that E[Y 2] = σ 2 and, for X = Y , the
equality holds in (18).
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Fig. 4. Graphs of shifted integrated quantile functions K[1]
X

and K[1]
Y

in Example 2

Example 2. Let X be a strictly positive random variable, i.e. FX(0) = 0, such that
E[X] = 1 and E[X2] = b. It is required to find a sharp lower bound for the probabil-
ity P(X > a), where a ∈ (0, 1) is fixed.

We will proceed in the similar way as in the previous example. Namely, let p :=
P(X > a) be fixed. Our purpose is to find a sharp lower bound for the second moment
E[X2] over all random variables X such that FX(0) = 0, E[X] = 1 and P(X > a) =
p.

The above class of distributions has a minimal element with respect to the convex
order. Indeed, let Y be a random variable such that P(Y = a) = 1 − p and P(Y =
1−a(1−p)

p
) = p. It is obvious that FY (0) = 0, E[Y ] = 1, and P(Y > a) = p. If

X is another random variable with these properties, then K[1]
X (u) ≤ K[1]

Y (u) for all

u ∈ [0, 1]. Indeed, K[1]
X (0) = K[1]

Y (0) = −1 and the graph of K[1]
Y consists of two

straight segments, see Fig. 4. Since P(X ≤ a) = 1−p, qL
X(u) ≤ a for u ∈ [0, 1−p].

In particular,

K[1]
X (1 − p) =

∫ 1−p

0
qL
X(s) ds − E[X] ≤ a(1 − p) − 1 = K[1]

Y (1 − p).

Due to convexity of integrated quantile functions, this implies K[1]
X (u) ≤ K[1]

Y (u) for
all u ∈ [0, 1], see Fig. 4. Hence, X ≥cx Y by Theorem 5 (i). Therefore, E[f (X)] ≥
E[f (Y )] for any convex function f . In particular, b = E[X2] ≥ E[Y 2] = a2(1−p)+
(1−a(1−p))2

p2 p. Resolving this inequality with respect to p = P(X > a), we obtain the
required lower bound

P(X > a) ≥ (1 − a)2

b − a(2 − a)
. (19)

The sharpness of the estimate in (19) follows if we put p = (1−a)2

b−a(2−a)
in the definition

of a random variable Y and verify that E[Y 2] = b and, for X = Y , the equality holds

in (19). Remark that replacing the right-hand side in (19) by a smaller quantity (1−a)2

b
,

we arrive at the inequality (7.6) in [10, p. 152].
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3 Uniform integrability and weak convergence

3.1 Tightness and uniform integrability
In this subsection we study conditions for tightness and uniform integrability of a
family of random variables in terms of integrated quantile function. It is a natural
question because both tightness and uniform integrability are characterized in terms
of one-dimensional distributions of these variables.

Theorem 6. Let (Xα) be a family of random variables. Then the following statements
are equivalent:

(i) The family of distributions {Law(Xα)} is tight.

(ii) For every u, v ∈ (0, 1), supα |KXα(u) − KXα(v)| < ∞.

(iii) The family of functions {KXα } is pointwise bounded on (0, 1).

(iv) The family of functions {KXα } is equicontinuous on every [a, b] ⊂ (0, 1).

Proof. (i) ⇒ (iv) Let [a, b] ⊂ (0, 1). The tightness condition implies that there is
C > 0 such that FXα(−C) < a and FXα(C) ≥ b for all α. Hence, −C < qL

Xα
(u) ≤

C for all α and u ∈ [a, b]. Thus, the functions KXα are even uniformly Lipschitz
continuous on [a, b].

(ii) ⇒ (iii) Let c ∈ (0, 1). Take a ∈ (0, c) and b ∈ (c, 1). By the assumption,
there is L > 0 such that KXα (a) − KXα(c) ≤ L and KXα(b) − KXα(c) ≤ L for all
α. Let u0,α be a point, where KXα(u0,α) = 0. If α is such that u0,α < c, then, by the
three chord inequality,

KXα (c)

c − u0,α

≤ KXα(b) − KXα (c)

b − c
,

therefore, KXα(c) ≤ cL/(b − c). Similarly, if α is such that u0,α > c, then KXα(c) ≤
(1 − c)L/(c − a).

(ii) ⇒ (i) Let ε > 0. By the assumption, there is L > 0 such that KXα(ε) −
KXα(ε/2) > −L and KXα(1 − ε/2) − KXα(1 − ε) ≤ L for all α. The first inequality
yields

−L < KXα(ε) − KXα(ε/2) =
∫ ε

ε/2
qL
Xα

(s) ds ≤ ε

2
qL
Xα

(ε),

which shows that − 2L
ε

< qL
Xα

(ε) and, hence, FXα(− 2L
ε

) < ε. Similarly, from the

second inequality, one gets FXα(
2L
ε

) ≥ 1 − ε for all α. This proves the tightness of
the laws of Xα .

Since implications (iv) ⇒ (ii) and (iii) ⇒ (ii) are obvious, the claim follows.

Theorem 7. Let {Xα} be a family of random variables. Then the following statements
are equivalent:

(i) The family {Xα} is uniformly integrable.

(ii) The family of integrated quantile functions {KXα } is equicontinuous on [0, 1].
(iii) The family of integrated quantile functions {KXα } is relatively compact in the

space C[0, 1] of continuous functions with supremum norm.
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Proof. Let us consider the probability space (Ω, F , P) as in the proof of Theorem 4

and define random variables Yα(ω) = qL
Xα

(ω). Then Xα
d= Yα and it is enough

to study the uniform integrability of the family {Yα}. Without loss of generality, we
suppose that Xα = Yα .

Let us recall that a family {Xα} is uniformly integrable if and only if E|Xα| are
bounded and E[|Xα|1A] are uniformly continuous, i. e. supα E[|Xα|1A] → 0 as
P(A) → 0; moreover, the boundedness of E|Xα| is a consequence of the uniform
continuity if the measure P has no atomic part, in particular, in our case. On the other
hand, by the Arzela–Ascoli theorem a set in C[0, 1] is relatively compact if and only
if it is uniformly bounded and equicontinuous.

We shall check that the uniform boundedness and the equicontinuity of {KXα } are
equivalent to uniform boundedness of E|Xα| and the uniform continuity of E[|Xα|1A],
respectively. In view of the above this is sufficient for the proof of the theorem.

By the properties of integrated quantile functions,

sup
u∈[0, 1]

KXα(u) = max
(
E

[
X−

α

]
, E

[
X+

α

]) ≤ E|Xα| ≤ 2 sup
u∈[0, 1]

KXα(u).

Hence, supα E|Xα| < ∞ if and only if the family {KXα } is uniformly bounded.
For a fixed ε > 0, let δ > 0 be such that supα E[|Xα|1A] < ε for any Borel set

A ⊆ (0, 1) with P(A) < δ. Let u1, u2 ∈ [0, 1] satisfy 0 < u2 − u1 < δ. Then, for
any α,

∣∣KXα(u2) − KXα(u1)
∣∣ =

∣∣∣∣ ∫ u2

u1

Xα(ω) dω

∣∣∣∣ ≤
∫ u2

u1

∣∣Xα(ω)
∣∣ dω < ε.

Conversely, fix ε > 0 and let δ > 0 be such that |KXα(u2) − KXα(u1)| < ε for all
α if |u2 − u1| < δ. Since Xα(ω) is increasing in ω, the following inequality holds for
any Borel subset A ⊆ (0, 1):∫

(0, P(A)]
Xα(ω) dω ≤

∫
A

Xα(ω) dω ≤
∫

[1−P(A), 1)

Xα(ω) dω. (20)

Therefore, if P(A) < δ then

E
[|Xα|1A

] =
∫

A∩{Xα<0}
−Xα(ω) dω +

∫
A∩{Xα>0}

Xα(ω) dω

≤
∫

(0, P(A∩{Xα<0})]
−Xα(ω) dω +

∫
[1−P(A∩{Xα>0}), 1)

Xα(ω) dω

≤ max
u∈(0,P(A)]

(
KXα (0) − KXα(u)

) + max
u∈[1−P(A),1)

(
KXα (1) − KXα(u)

)
< 2ε.

The following criterion of uniform integrability is proved in [17].

Theorem 8 (Leskelä and Vihola). A family {Xα} of integrable random variables is
uniformly integrable if and only if there is an integrable random variable X such that
|Xα| ≤icx X for all α.
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Proof. Without loss of generality, we may assume that all Xα are nonnegative. To
simplify notation, let Kα(u) := K[1]

Xα
(u), u ∈ [0, 1]. Then Kα are increasing con-

tinuous convex functions with Kα(1) = 0. According to Theorems 4, 5 (ii) and 7, it
is enough to prove that the family {Kα} is equicontinuous if and only if there is an
increasing continuous convex function K(u), u ∈ [0, 1], with K(1) = 0 such that

Kα(u) ≥ K(u) for all u ∈ [0, 1] for all α.

The sufficiency is evident. Indeed, if 0 ≤ u1 ≤ u2 ≤ 1, then, for all α,

0 ≤ Kα(u2) − Kα(u1) ≤ Kα(1) − Kα

(
1 − (u2 − u1)

) = −Kα

(
1 − (u2 − u1)

)
≤ −K

(
1 − (u2 − u1)

) = K(1) − K
(
1 − (u2 − u1)

)
,

and the equicontinuity follows from the continuity of K .
Let us define K as the lower semicontinuous convex envelope of infα Kα . To

prove the necessity, it is enough to show that K(1) = 0 if the family {Kα} is equicon-
tinuous. Fix ε > 0 and let δ > 0 be such that |Kα(u2) − Kα(u1)| < ε for all α

if |u2 − u1| ≤ δ. In particular, Kα(1 − δ) > −ε. Since Kα is convex, we have
Kα(u) > − ε

δ
(1 − u) for all u ∈ [0, 1 − δ] and for all α. Moreover, since Kα is

increasing, Kα(u) ≥ −ε for all u ∈ [1 − δ, 1] and for all α. Combining, we get

inf
α

Kα(u) ≥ min

(
−ε

δ
(1 − u),−ε

)
≥ −ε

δ
+ ε(1 − δ)

δ
u,

for all u ∈ [0, 1]. It follows that K(u) ≥ − ε
δ
+ ε(1−δ)

δ
u for all u ∈ [0, 1], in particular,

K(1 − δ) > −2ε. The claim follows.

3.2 Weak convergence

In this subsection (Xn) is a sequence of random variables.

Theorem 9. The following statements are equivalent:

(i) The sequence (Xn) weakly converges.

(ii) There is a sequence (cn) of numbers such that, for every u ∈ (0, 1), the se-
quence (KXn(u) − cn) converges to a finite limit.

(iii) The sequence (KXn) converges uniformly on every [α, β] ⊆ (0, 1).

Moreover, in this case if X is a weak limit of (Xn), then KX(u) = limn→∞ KXn(u)

for all u ∈ (0, 1).

Remark 2. If E[X−
n ] < ∞ (resp. E[X+

n ] < ∞) for all n, then the pointwise conver-
gence of K[0]

Xn
(resp. K[1]

Xn
) on (0, 1) is sufficient (use Theorem 9, (ii) ⇒ (i)) but not

necessary for the weak convergence of Xn.

Theorem 10. Let (Xn) weakly converge and E|Xn| < ∞ (resp. E[X−
n ] < ∞, resp.

E[X+
n ] < ∞). Then the following statements are equivalent:

(i) The sequence (|Xn|) (resp. (X−
n ), resp. (X+

n )) is uniformly integrable.
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(ii) The sequence of functions (KXn) converges pointwise on [0, 1] (resp. [0, 1),
resp. (0, 1]) to a continuous function with finite values.

(iii) The sequence (KXn) converges uniformly to a finite-valued function on [0, 1]
(resp. on every [0, β] ⊆ [0, 1), resp. on every [α, 1] ⊆ (0, 1]).

Remark 3. In contrast to Remark 2, a combination of the weak convergence of Xn

and the uniform integrability of X−
n (resp. X+

n ) can be expressed in terms of the
shifted integrated quantile functions K[0]

Xn
(resp. K[1]

Xn
). For instance, let a sequence

(Xn) weakly converge to X and the sequence (X+
n ) is uniformly integrable. Then the

pointwise limit of K[1]
Xn

(u) satisfies

lim
n→∞ K[1]

Xn
(u) = lim

n→∞ KXn(u) − lim
n→∞ E

[
X+

n

]
= KX(u) − E

[
X+] = K[1]

X (u), u ∈ (0, 1], (21)

and is continuous on (0, 1]. Conversely, if the functions K[1]
Xn

converge pointwise to a
continuous limit on (0, 1], then Xn weakly converges, say, to X (use Theorem 9, (ii)
⇒ (i)). In particular, for any u ∈ (0, 1),

lim
n→∞ K[1]

Xn
(u) = lim

n→∞ KXn(u) − lim
n→∞ E

[
X+

n

] = KX(u) − lim
n→∞ E

[
X+

n

]
.

Continuity of the limiting function in the left-hand side of the above formula at u = 1
implies limn→∞ E[X+

n ] = limu↑1 KX(u) = E[X+].
Proof of Theorems 9 and 10. First, let us suppose that (Xn) weakly converges to X.
It is well known that then qL

Xn
(u) → qL

X(u) as n → ∞ for every continuity point u

of qL
X. Put un,0 := FXn(0) and u0 := FX(0).
Assume for the moment that Xn are uniformly bounded. Then, for any u ∈ [0, 1],

KXn(u) =
∫ u

0
qXn(s) ds −

∫ un,0

0
qXn(s) ds =

∫ u

0
qXn(s) ds +

∫ 1

0

(
qXn(s)

)−
ds

→
∫ u

0
qX(s) ds +

∫ 1

0

(
qX(s)

)−
ds = KX(u)

by the dominated convergence theorem. Moreover, by Theorem 7 the sequence (KXn)

is relatively compact in C[0, 1]. Combined with pointwise convergence, this shows
that (KXn) converges to KX uniformly on [0, 1].

If no assumptions on Xn are imposed, let us introduce the function gC(x) :=
max(min(x, C), −C), C > 0, and define random variables

Yn := gC(Xn), Y := gC(X).

Then (Yn) weakly converges to Y . Hence, KYn → KY uniformly on [0, 1] as it has
just been proved. However, KYn = KXn on [FXn(−C), FXn(C)] � un,0 and KY = KX

on [FX(−C), FX(C)] � u0. Given [α, β] ⊆ (0, 1), choose C > 0 so that [α, β] ⊆
[FX(−C), FX(C)] and [α, β] ⊆ [FXn(−C), FXn(C)] for all n, which is possible
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by tightness. Therefore, KXn(u) → KX(u) uniformly in u on [α, β] ⊆ (0, 1). In
particular, (KXn) converges pointwise to KX on (0, 1).

To complete the proof of Theorem 9 it remains to prove implication (ii) ⇒ (i).
Let u, v ∈ (0, 1). By the assumption, the sequence KXn(u) − KXn(v) converges to a
finite limit and, hence, is bounded. By Theorem 6, the laws of Xn are tight. Let (Xnk

)

be a weakly convergent subsequence. It follows from what has been proved that the
integrated quantile function K(u) of its limit coincides with limk→∞ KXnk

(u) for
u ∈ (0, 1). Therefore, for all u ∈ (0, 1),

lim
n→∞

(
KXn(u) − cn

) = lim
k→∞

(
KXnk

(u) − cnk

) = K(u) − lim
k→∞ cnk

.

This implies that cnk
converges to a finite limit and that K(u) is obtained from

limn→∞(KXn(u) − cn) by adding a constant. Since K is an integrated quantile func-
tion, this constant is determined uniquely. Thus, K is the same for all weakly conver-
gent subsequences, which means that (Xn) weakly converges.

It is enough to prove Theorem 10 in one of three cases, for example, in the case
E[X−

n ] < ∞. Assume that (X−
n ) is uniformly integrable. Then E[X−

n ] → E[X−],
where X is a weak limit of (Xn). In other words, KXn(0) → KX(0). Thus, we have
(ii). Moreover, the sequence (KX−

n
) is equicontinuous. It follows that (KXn) converges

uniformly on every segment [0, β] ⊆ (0, 1). Implication (iii) ⇒ (ii) is trivial. If (ii)
holds, then limn→∞ KXn(u) is a continuous function in u ∈ [0, 1). On the other hand,
this limit is KX(u) for u ∈ (0, 1). Hence, E[X−] = KX(0) = limn→∞ E[X−

n ], and
the sequence (X−

n ) is uniformly integrable.

4 Applications to binary statistical models

The theory of statistical experiments deals with the problem of comparing the infor-
mation in different experiments. The foundation of the theory of experiments was laid
by Blackwell [1, 2], who first studied a notion of being more informative for experi-
ments. Since it is difficult to give an explicit definition of statistical information, the
theory of statistical experiments evaluates the performance of an experiment in terms
of the set of available risk functions, in general, for arbitrary decision spaces and loss
functions. For the theory of statistical experiments we refer to [15, 25], and especially
to [27, 28], where the reader can find unexplained results and additional information.

In this paper we consider only binary statistical experiments, or dichotomies, E =
(Ω,F , P, P′). It is known that for binary models, it is enough to deal with testing
problems, i. e. with tests as decision rules and with the probabilities of errors of the
first and the second kinds of a test.

Let us introduce some notation. Q is any probability measure dominating P and
P′, z := dP/dQ and z′ := dP′/dQ are the corresponding Radon–Nikodým deriva-
tives. E, E′, and EQ are the expectations with respect to P, P′ and Q respectively.
Note that P(z = 0) = 0 and Z := z′/z, where 0/0 = 0 by convention, is the Radon–
Nikodým derivative of the P-absolutely continuous part of P′ with respect to P.

For an experiment E = (Ω,F , P, P′), denote by Φ(E) the set of all test functions
ϕ in E, i.e. measurable mappings from (Ω,F ) to [0, 1]. It is convenient for us to
interpret ϕ(ω) as the probability to accept the null hypothesis P and to reject the
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Fig. 5. The shaded area represents the set N(E). The thick curve corresponds to admissible, or
Neyman–Pearson tests ϕ∗ with the following property: if α(ϕ) ≤ α(ϕ∗) and β(ϕ) ≤ β(ϕ∗)

for some ϕ ∈ Φ(E), then both inequalities are equalities. See [27, Chapter 2] for more details.
The thick curve together with the horizontal segment [0, P(Z > 0)] × {0} is the graph of the
function rE(1 − u)

alternative P′ if ω is observed. Then α(ϕ) := E[1 − ϕ] and β(ϕ) := E′[ϕ] are the
probabilities of errors of the first and the second kind respectively of a test ϕ.

Denote

N(E) := {(
E[ϕ], E′[ϕ]) : ϕ ∈ Φ(E)

} = {(
1 − α(ϕ), β(ϕ)

) : ϕ ∈ Φ(E)
}
.

It is well known that N(E) is a convex and closed subset of [0, 1] × [0, 1], contains
(0, 0), and is symmetric with respect to the point (1/2, 1/2), see, e.g., [16, p. 62]. In
Fig. 5 we present a set N(E) of generic form. Introduce also the risk function

rE(u) := inf
{
β(ϕ) : ϕ ∈ Φ(E), α(ϕ) = u

}
, u ∈ [0, 1], (22)

that is the smallest probability of the second kind error if the probability of the first
kind error is u. It follows that the set N(E) and the risk function rE are connected by

rE(u) = inf
{
v : (1 − u, v) ∈ N(E)

}
(23)

and
N(E) = {

(u, v) ∈ [0, 1] × [0, 1] : rE(1 − u) ≤ v ≤ 1 − rE(u)
}
. (24)

In particular, rE is a continuous convex decreasing function taking values in [0, 1]
and rE(1) = 0. Therefore, by Theorem 4, rE(u) coincides on [0, 1] with an integrated
quantile function corresponding to some distribution. The following result determines
this distribution and explains why it is natural to use integrated quantile functions for
binary models.

Proposition 1. For all u ∈ [0, 1], rE(u) = K−Z(u), where K−Z is the integrated
quantile function corresponding to the distribution of the negative likelihood ratio
−Z = −z′/z under the null hypothesis.
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Proof. Let ϕ0 ∈ Φ(E) and x ∈ R+. Then the straight line with the slope x and
passing through the point (E[ϕ0], E′[ϕ0]) lies below the graph of K(u) := rE(1 − u)

on [0, 1] if and only if, for every ϕ ∈ Φ(E),

E′[ϕ] ≥ E′[ϕ0] + x
(
E[ϕ] − E[ϕ0]

)
.

Passing to a dominating measure Q, the above inequality can be rewritten as

EQ
[(

z′ − xz
)
(ϕ − ϕ0)

] ≥ 0.

This holds for every ϕ ∈ Φ(E) if and only if

ϕ0 = 1{z′<xz} + ϕ01{z′=xz} Q-a.s. (25)

Let u ∈ (0, 1) and take any x ∈ [qL
Z(u), qR

Z (u)]. Then u ∈ [FZ(x − 0), FZ(x)],
so there is γ ∈ [0, 1] such that u = (1 − γ )FZ(x − 0) + γFZ(x). Finally, put ϕ0 :=
1{z′<xz} + γ1{z′=xz}. Since Z = z′/z P-a.s., we get E[ϕ0] = u and, obviously, ϕ0
satisfies (25). This means that x ∈ ∂K(u). Conversely, let u ∈ (0, 1) and x ∈ ∂K(u).
Take any ϕ0 ∈ Φ(E) such that E[ϕ0] = u and β(ϕ0) = K(u). Then ϕ0 satisfies (25),
which implies E[ϕ0] ∈ [FZ(x − 0), FZ(x)]. Hence, x ∈ [qL

Z(u), qR
Z (u)].

It is clear that K(0) = KZ(0) = 0. Now taking into account that K and KZ are
convex functions, KZ is continuous on [0, 1], and ∂K(u) = ∂KZ(u) for u ∈ (0, 1),
it remains to prove that K(1) ≤ KZ(1) = E[Z]. This is easy: take ϕ0 := 1{z>0},
then E[ϕ0] = 1 and E′[ϕ0] = P′(z > 0) = EQ[z′1{z>0}] = E[Z]. Finally, rE(u) =
K(1 − u) = KZ(1 − u) = K−Z(u).

Remark 4. A usual way to prove that the set N(E) is closed is based on weak
compactness of test functions, see, e.g., [16]. The reader may readily verify that the
closedness of N(E) follows directly from the above proof.

Let us also introduce the minimum Bayes risk function (the error function)

bE(π) := inf
ϕ∈Φ(E)

(
(1 − π)α(ϕ) + πβ(ϕ)

)
, π ∈ [0, 1].

It can be expressed in terms of risk function rE and vice versa. Indeed, for any π ∈
(0, 1),

bE(π) = inf
u∈[0, 1]

(
(1 − π)u + πrE(u)

)
= −π sup

u∈[0, 1]

(
−1 − π

π
u − rE(u)

)
= −π sup

u∈[0, 1]

(
−1 − π

π
u − K−Z(u)

)
=

= −πJ−Z

(
−1 − π

π

)
= 1 − π − πJZ

(
1 − π

π

)
. (26)

In particular, it follows from Theorem 1 that

lim
π↓0

bE(π)

π
= lim

x→+∞
(
x − JZ(x)

) = E[Z],

lim
π↑1

bE(π)

1 − π
= 1 − lim

x↓0

JZ(x)

x
= P(Z > 0),

see [27, Lemma 14.6] and [28, p. 607].
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Conversely, using Definition 2 and (26), we get, for u ∈ [0, 1],
rE(u) = K−Z(u) = sup

x∈R

(
xu − J−Z(x)

) = sup
x<0

(
xu − J−Z(x)

)
= sup

π∈(0, 1)

(
−1 − π

π
u − J−Z

(
−1 − π

π

))
= sup

π∈(0, 1)

1

π

(
bE(π) − (1 − π)u

)
,

(27)

see [28, p. 590]. Here we have used that J−Z(x) = x for x ≥ 0.
Finally, let us introduce one more characteristic of binary models, namely the

distribution of the ‘likelihood ratio’

μE(A) := P(Z ∈ A), A ∈ B(R+).

Now let us present some basic notions and results from the theory of comparison
of dichotomies. All these facts are well known, see e. g. [27, Chapter 3] and [28,
Chapter 10]. Our aim is to show how they can be deduced with the help of the results
in Sections 2 and 3.

Definition 3. Let E = (Ω,F , P, P′) and Ẽ = (Ω̃, F̃ , P̃, P̃′) be two binary exper-
iments. E is said to be more informative than Ẽ, denoted by E � Ẽ or Ẽ � E, if
N(E) ⊇ N(̃E). E and Ẽ are called equivalent (E ∼ Ẽ) if E � Ẽ and E � Ẽ. The type
of an experiment is the totality of all experiments which are equivalent to the given
experiment.

Proposition 2. Let E and Ẽ be binary experiments. The following statements are
equivalent:

(i) E � Ẽ;

(ii) rE ≤ rẼ;

(iii) bE ≤ bẼ;

(iv) μẼ ≤decx μE.

Proof. (i) ⇔ (ii) follows from (23) and (24). (ii) ⇔ (iii) is a consequence of (26)
and (27). Finally, (ii) ⇔ (iv) follows from Proposition 1 and Theorem 5.

Corollary 3. Let E and Ẽ be binary experiments. The following statements are equiv-
alent:

(i) E ∼ Ẽ;

(ii) rE = rẼ;

(iii) bE = bẼ;

(iv) μE = μẼ.

Proposition 3. (i) The mapping E � rE is onto the set of all convex continuous
decreasing functions r : [0, 1] → [0, 1] such that r(1) = 0.
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(ii) The mapping E � bE is onto the set of all concave functions b : [0, 1] →
[0, 1] such that b(π) ≤ π ∧ (1 − π).

(iii) The mapping E � μE is onto the set of all probability measures μ on
(R+, B(R+)) such that

∫
x μ(dx) ≤ 1.

Proof. (i) Let r(u), u ∈ [0, 1], be a convex continuous decreasing function with
r(1) = 0 and r(0) ≤ 1. Let Ω = [0, 1] and F be the Borel σ -field. Define P
on (Ω, F ) as the Lebesgue measure and P′ as the measure with the distribution
function

F(x) =
⎧⎨⎩

0, if x < 0,
r(1 − x), if 0 ≤ x < 1,
1, if x ≥ 1.

(28)

Then Z(u) = F ′−(u) P-a.s. As in the proof of Theorem 4, it follows that r(1 − u) =
KZ(u). Proposition 1 allows us to conclude that rE = r.

(iii) First, it is evident that μE is a probability measure on (R+, B(R+)) such
that

∫
x μE(dx) ≤ 1 for any dichotomy E. Now, let μ be a probability measure on

(R+, B(R+)) such that
∫

x μ(dx) ≤ 1. Put Ω = [0,+∞] and let F be the Borel
σ -field. Define P as the probability measure which coincides with μ on Borel subsets
of R+. Finally, define P′ by

P′(B ∩ R+) :=
∫

B∩R+
x μ(dx), P′({+∞}) := 1 −

∫
R+

x μ(dx).

If E is defined as E = (Ω, F , P, P′), it is clear that μE = μ.
(ii) First, it follows from the definition of the error function that 0 ≤ bE(π) ≤

π∧(1−π), π ∈ [0, 1], and that bE is concave. If b is a function with these properties,
then define J(x) := x − (1 + x)b( 1

1+x
), x ≥ 0, cf. (26); put also J(x) = 0 for x < 0.

Using concavity of b, it is easy to check that J is convex on R+. Since b(0) = 0, we
have limx→+∞ J(x)

x
= 1. The inequalities 0 ≤ b(π) ≤ 1−π imply that 0 ≤ J(x) ≤ x

for all x ≥ 0. In particular, J is convex on R and, by Theorem 2, J is the integrated
distribution function of some nonnegative random variable Z. Finally, the inequality
b(π) ≤ π implies that J(x) ≥ x − 1, which means that E[Z] ≤ 1 by Theorem 1.
Hence, b is the error function of an experiment E such that μE = Law(Z).

Let us note that the proofs of (i) and (iii) give more than it is stated. Starting with
a function r or a measure μ from corresponding classes, we construct an experiment
such that its risk function (resp., the distribution of the likelihood ratio) coincides with
r (resp. μ). Now, if we start in (i) with the risk function rE of an experiment E, we
obtain a new experiment, say, κ(E), equivalent to E. Moreover, experiments E1 and
E2 are equivalent if and only if κ(E1) = κ(E2). In other words, the rule E � κ(E) is
a representation of binary experiments. Another representation is given in the proof
of (iii).

Definition 4. Let E = (Ω,F , P, P′) and Ẽ = (Ω̃, F̃ , P̃, P̃′) be two binary experi-
ments. E is called ε-deficient with respect to Ẽ if for any ϕ̃ ∈ Φ(̃E) there is ϕ ∈ Φ(E)

such that α(ϕ) ≤ α(ϕ̃) + ε/2 and β(ϕ) ≤ β(ϕ̃) + ε/2. The number

δ2(E, Ẽ) := inf {ε ≥ 0 : E is ε-deficient with respect to Ẽ}
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is called the (asymmetric) deficiency of E with respect to Ẽ. Define also the (symmet-
ric) deficiency

�2(E, Ẽ) := max
(
δ2(E, Ẽ), δ2(̃E, E)

)
between E and Ẽ.

It is easy to check that E � Ẽ if and only if δ2(E, Ẽ) = 0. Hence, E ∼ Ẽ if
and only if �2(E, Ẽ) = 0. It is also easy to check that δ2 and �2 satisfy the triangle
inequality and, hence, �2 is a metric on the space of types of experiments. We shall
see after the next proposition that this metric space is a compact space.

Proposition 4. Let E and Ẽ be binary experiments. The following statements are
equivalent:

(i) E is ε-deficient with respect to Ẽ.

(ii) For all u ∈ [0, 1 − ε
2 ],

rE

(
u + ε

2

)
≤ rẼ(u) + ε

2
. (29)

(iii) For all π ∈ (0, 1),

bE(π) ≤ bẼ(π) + ε

2
. (30)

Proof. (i) ⇔ (ii) follows immediately from Definition 4, so our goal is to prove
(ii) ⇔ (iii) using dual relations (13) and (14). A direct proof of (i) ⇔ (iii) can be
found in [27].

To simplify the notation, put K := KZ , J := JZ , while the corresponding func-
tions in the experiment Ẽ are denoted by K̃ and J̃. Since rE(u) = K(1 − u) (29) is
equivalent to

K(u) ≤ K̃
(

u + ε

2

)
+ ε

2
for all u ∈

[
0, 1 − ε

2

]
. (31)

In turn, if follows from (26) that (30) is equivalent to

J(x) ≥ J̃(x) − ε

2
(1 + x) for all x > 0. (32)

Since J(x) = 0 for x ≤ 0, we have K(u) = supx≥0{xu − J(x)} and similarly for
K̃. Thus, it follows from (32) that, for u ≥ 0,

K(u) ≤ sup
x≥0

{
xu + ε

2
(1 + x) − J̃(x)

}
= K̃

(
u + ε

2

)
+ ε

2
.

Conversely, let (31) hold true, and let x > 0 be such that FZ̃(x − 0) ≥ ε
2 , where

Z̃ is the Radon–Nikodým derivative of the P̃-absolutely continuous part of P̃′ with
respect to P̃. Then

J(x) ≥ sup
u∈[0, 1]

{
xu − K(u)

} ≥ sup
u∈[0, 1− ε

2 ]

{
xu − K(u)

}
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≥ sup
u∈[0, 1− ε

2 ]

{
xu − ε

2
− K̃

(
u + ε

2

)}
= sup

u∈[ ε
2 , 1]

{
xu − (1 + x)ε

2
− K̃(u)

}
= −ε

2
(x + 1) + J̃(x),

where the last equality follows from the fact that the supremum in (14) is attained at
u ∈ [FZ̃(x −0), FZ̃(x)], cf. (17). It remains to note that if x is such that FZ̃(x −0) <
ε
2 , then J̃(x) ≤ εx

2 and (32) is obviously true.

As a consequence, we obtain the following expressions for δ2(E, Ẽ) and �2(E, Ẽ),
see ([27], [28, p. 604]):

Corollary 4. Let E and Ẽ be binary experiments. Then

δ2(E, Ẽ) = 1

2
sup

π∈[0, 1]
{
bE(π) − bẼ(π)

}
,

�2(E, Ẽ) = 1

2
sup

π∈[0, 1]
∣∣bE(π) − bẼ(π)

∣∣ = 1

2
L(F, F̃ ),

where L(·, ·) is the Lévy distance between distribution functions, F is defined as in
(28) with r = rE, and F̃ is defined similarly with r = rẼ.

The subset of concave functions b on [0, 1] satisfying 0 ≤ b(π) ≤ π ∧ (1 − π)

is clearly closed with respect to uniform convergence and is equicontinuous. By the
Arzela–Ascoli theorem, this subset is a compact in the space C[0, 1] with sup-norm.
Therefore, the space of types of experiments is a compact metric space with �2-
metric.

Definition 5. Let E = (Ω,F , P, P′) and En = (Ωn,F n, Pn, P′n), n ≥ 1, be binary
experiments. We say that En weakly converges to E if �2(En, E) → 0 as n → ∞.

Proposition 5. Let E and En, n ≥ 1, be binary experiments. The following statements
are equivalent:

(i) �2(En, E) → 0.

(ii) rEn converges to rE pointwise on (0, 1].
(ii′) rEn converges uniformly to rE on any [a, 1] ⊂ (0, 1].
(iii) bEn converges uniformly to rE on [0, 1].
(iv) μEn weakly converges to μE.

Proof. The equivalences (i) ⇔ (ii) and (i) ⇔ (iii) follow from Corollary 4, and the
equivalence of (ii), (ii′), and (iv) is a consequence of Theorem 10 and Proposition 1.
However, we prefer to give a direct proof of the equivalence (i) ⇔ (ii) without using
the Lévy distance.

Assume (i). By (29),

rEn(u) + �2(En, E)

2
≥ rE

(
u + �2(En, E)

2

)
, 0 ≤ u ≤ 1 − �2(En, E)

2
,
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rE

(
u − �2(En, E)

2

)
+ �2(En, E)

2
≥ rEn(u),

�2(En, E)

2
≤ u ≤ 1.

Passing to the limit as n → ∞, we get

lim inf
n→∞ rEn(u) ≥ rE(u) for 0 ≤ u < 1,

rE(u) ≥ lim sup
n→∞

rEn(u) for 0 < u ≤ 1.

Combining these inequalities, we obtain limn→∞ rEn(u) = rE(u) for 0 < u < 1.
Since risk functions vanish at 1, the convergence holds for u = 1 as well.

Now the converse implication (ii) ⇒ (i) is proved by standard compactness argu-
ments.

5 Chacon–Walsh revisited

The Skorokhod embedding problem was posed and solved by Skorokhod [26] in the
following form: given a centered distribution μ with finite second moment, find a
stopping time T such that E[T ] < ∞ and Law(BT ) = μ, where B = (Bt )t≥0,
B0 = 0, is a standard Brownian motion. Chacon and Walsh [4] suggest to construct
T as the limit of an increasing sequence of stopping times Tn, each being the first exit
time (after the previous one) of B from a compact interval. This construction has a
simple graphical interpretation in terms of the potential functions of BTn (we recall
that potential functions are defined in (3)).

Cox [6] extends the Chacon–Walsh construction to a more general case. He con-
siders a Brownian motion B = (Bt )t≥0 with a given integrable starting distribution
μ0 for B0 and a general integrable target distribution μ. A solution T (such that
Law(BT ) = μ) must be found in the class of minimal stopping times.

It is easy to observe that the Chacon–Walsh construction has a graphical inter-
pretation in terms of integrated quantile functions as well; moreover, in our opinion,
the picture is more simple. We give alternative proofs of the result in [4] and of some
results in [6]. Moreover, we construct a minimal stopping time in some special case
where μ0 and μ may be non-integrable.

Let us recall the definition of the balayage. For a probability measure μ on R and
an interval I = (a, b), −∞ < a < b < +∞, the balayage μI of μ on I is defined as
the measure which coincides with μ outside [a, b], vanishes on (a, b), and such that

μI

({a}) =
∫

[a, b]
b − x

b − a
μ(dx), μI

({b}) =
∫

[a, b]
x − a

b − a
μ(dx). (33)

Since∫
[a, b]

μI (dx) =
∫

[a, b]
μ(dx) and

∫
[a, b]

x μI (dx) =
∫

[a, b]
x μ(dx), (34)

the balayage μI is a probability measure and has the same mean as μ (if defined). It
follows that, if B = (Bt )t≥0 is a continuous local martingale with 〈B,B〉∞ = ∞ a.s.
(e. g. a Brownian motion), μ is the distribution of BS , where S is a stopping time, and
the stopping time T is defined by
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Fig. 6. Graphs of shifted integrated quantile functions K[1]
X

and K[1]
Y

: the distribution of Y is
the balayage of the distribution of X

T := inf{t ≥ S : Bt /∈ I }, (35)

then T < +∞ a. s. and the distribution of BT is the balayage μI .
Let X and Y be random variables with the distributions μ and μI respectively. It

is clear that

qL
Y (u) =

⎧⎨⎩qL
X(u), if 0 < u ≤ FX(a − 0) or FX(b) < u < 1,

a, if FX(a − 0) < u ≤ FX(a − 0) + μI ({a}),
b, if FX(a − 0) + μI ({a}) < u ≤ FX(b).

Moreover, the second equality in (34) can be rewritten as

KX

(
FX(b)

) − KX

(
FX(a − 0)

) = KX

(
FY (b)

) − KX

(
FY (a − 0)

)
.

This allows us to describe how to obtain the integrated quantile function of Y : pass
the tangent lines with the slopes a and b to the graph of KX, replace the curve on this
graph between points where the graph meets the lines by the corresponding segments
of these lines. If the point of intersection of these lines lies below the horizontal axis,
then shift the resulting graph vertically upwards so that this point will come on the
horizontal axis.

If E[X+] < ∞ (resp. E[X−] < ∞), then E[Y+] < ∞ (resp. E[Y−] < ∞), and
the last step is not needed if we deal with shifted integrated quantile functions K[1]

X and

K[1]
Y (resp. K[0]

X and K[0]
Y ), see Fig. 6. We state this fact in the following lemma only in

the case where E[X+] < ∞. Its proof is immediate from the previous paragraph.

Lemma 1. Let μ be the distribution of a random variable X with E[X+] < ∞,
Law(Y ) = μI , where I = (a, b) is a finite interval. Put ua := FX(a − 0) and
ub := FX(b). Then E[Y+] < ∞ and

K[1]
Y (u) =

{
K[1]

X (u), if u /∈ (ua, ub),(
a(u − ua) + K[1]

X (ua)
) ∨ (

b(u − ub) + K[1]
X (ub)

)
, if u ∈ (ua, ub).

In particular, K[1]
Y (u) ≤ K[1]

X (u) for all u ∈ [0, 1].
The next lemma is a key tool in our future construction.
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Lemma 2. Let X and Y be random variables such that E[X+] < ∞, E[Y+] < ∞,
and K[1]

Y (u) ≤ K[1]
X (u) for all u ∈ [0, 1]. Fix v ∈ (0, 1). Then there is a random

variable Z such that K[1]
Y (u) ≤ K[1]

Z (u) ≤ K[1]
X (u) for all u ∈ [0, 1], K[1]

Z (v) =
K[1]

Y (v), and the distribution of Z is a balayage of the distribution of X.

Proof. Without loss of generality, we may assume that K[1]
X (v) > K[1]

Y (v). Let us
consider the following equation:

xv − JX(x) − E
[
X+] = K[1]

Y (v). (36)

The maximum of the left-hand side over x equals KX(v) − E[X+] = K[1]
X (v) and

is greater than the right-hand side. Moreover, it is attained at x ∈ [qL
X(v), qR

X(v)].
Further, applying Theorem 1 (iv)–(v), we get

lim
x→+∞

(
xv − JX(x)

) = lim
x→+∞

(
x − JX(x)

) + lim
x→+∞(v − 1)x = −∞

and

lim
x→−∞

(
xv − JX(x)

) = lim
x→−∞ x

(
v − JX(x)

x

)
= −∞.

Since the left-hand side of (36) is a concave function in x, the equation (36) has two
solutions a < qL

X(v) and b > qR
X(v), i. e. FX(a) < v < FX(b − 0).

Using Corollary 2, rewrite equation (36) in the form

K[1]
X

(
FX(x)

) = K[1]
Y (v) + x

(
FX(x) − v

)
.

This equality for x = a (resp. x = b) says that the straight line with the slope a (resp.
b) and passing through the point (v, K[1]

Y (v)) meets the curve K[1]
X at the point where

the first coordinate is FX(a) (resp. FX(b)). Due to (17), these straight lines are tangent
lines to the curve K[1]

X . Comparing with Lemma 1, we obtain that a random variable
Z such that its distribution is the balayage of the distribution of X on I = (a, b)

satisfies all the requirements.

From now on, we assume that there is a probability space with filtration (Ω,F ,

(Ft )t≥0, P) and an (Ft , P)-Brownian motion B = (Bt )t≥0 with an arbitrary initial
distribution. For c > 0, let

Hc = inf{t ≥ 0 : Bt ≥ c}.
The next lemma is inspired by Theorem 5 in [7].

Lemma 3. Let S be a stopping time and T defined by (35) with I = (a, b). If
E[B+

S ] < ∞ and cP(S ≥ Hc) ≤ E[BS1{S≥Hc}], then E[B+
T ] < ∞ and cP(T ≥

Hc) ≤ E[BT 1{T ≥Hc}].
Proof. By the strong Markov property, in view of boundedness of the random vari-
ables under the conditional expectations below,

E[BT − BS |FS] = 0 and E[BT − B(S∨Hc)∧T |F(S∨Hc)∧T ] = 0.
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Since {S ≥ Hc} ∈ FS and {S < Hc ≤ T } ∈ F(S∨Hc)∧T , we get

cP(T ≥ Hc) = cP(S ≥ Hc) + cP(T ≥ Hc > S)

≤ E[BS1{S≥Hc}] + E[B(S∨Hc)∧T 1{S<Hc≤T }]
= E[BT 1{S≥Hc}] + E[BT 1{S<Hc≤T }] = E[BT 1{T ≥Hc}].

Let us also recall that T is a minimal stopping time if any stopping time R ≤ T

with Law(BR) = Law(BT ) satisfies R = T a. s.

Theorem 11. Let μ0 and μ be distributions on R such that
∫
R x+ μ(dx) < ∞ and∫

R
(x − y)+ μ0(dx) ≤

∫
R
(x − y)+ μ(dx) for all y ∈ R.

Let B be a Brownian motion with the initial distribution Law(B0) = μ0. Then there
is an increasing sequence of stopping times 0 = T0 ≤ T1 ≤ · · · ≤ Tn ≤ . . . such that
T := limn→∞ Tn is a minimal a. s. finite stopping time, the distribution of BTn is a
balayage of the distribution of BTn−1 for each n = 1, 2, . . . , and Law(BT ) = μ.

Proof. Put X0 := BT0 and let Law(Y ) = μ. Then K[1]
Y (u) ≤ K[1]

X0
(u) for all u ∈

[0, 1]. Take an arbitrary sequence {vn} of distinct points in (0, 1) such that {vn : n =
1, 2, . . . } is dense in [0, 1]. Recursively define Xn as Z in Lemma 2 applied to
X = Xn−1, Y , and v = vn. Then we obtain a sequence {Xn} of random variables
such that

K[1]
Y (u) ≤ K[1]

Xn
(u) ≤ K[1]

Xn−1
(u) ≤ K[1]

X0
(u), u ∈ (0, 1],

and K[1]
Y (vn) = K[1]

Xn
(vn), which implies K[1]

Y (vn) = K[1]
Xm

(vn) for all n and m ≥ n.

Then limn→∞ K[1]
Xn

(u) exists, is finite for all u ∈ (0, 1), and coincides with K[1]
Y (u)

on the set {vn : n = 1, 2, . . . }. Being a convex function in u, this limit coincides with
K[1]

Y (u) everywhere on (0, 1). It follows from Remark 3 that Xn weakly converges to
Y and the sequence {X+

n } is uniformly integrable.
Moreover, the construction in Lemma 2 provides an interval (a, b) denoted by In

such that the distribution of Xn is the balayage of the distribution of Xn−1 on In. Now
recursively define

Tn := inf{t ≥ Tn−1 : Bt /∈ In}.
Then BTn has the same distribution as Xn. Since

E[B01{0≥Hc}] = E[B01{B0≥c}] ≥ cP(B0 ≥ c),

we conclude from Lemma 3 that, for any c > 0 and n,

cP(Tn ≥ Hc) ≤ E[BTn1{Tn≥Hc}] ≤ E
[
B+

Tn

] ≤ E
[
Y+]

.

If P(T = ∞) = δ > 0, then the limit of the expression on the left in the last inequality
is greater than or is equal to cδ, which is greater than the right-hand side if c is large
enough. This contradiction proves that T < ∞ a.s. This implies that BTn converges
a.s. to BT and, hence, Law(BT ) = μ.
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It remains to prove that T is a minimal stopping time. According to Theorem 4.1
in [12], it is enough to find a one-to-one function G such that G(B)T is a closed
submartingale.

Let g(x), x ∈ R, be a continuously differentiable function with the following
properties: g ≡ 1 on [0,+∞) and is strictly positive and increasing on (−∞, 0],∫ 0
−∞ g(x) dx < ∞, and g′(x) ≤ 1 for all x. Put G(y) := ∫ y

0 g(x) dx, then, in
particular, G is strictly increasing and bounded from below, and G(y) = y for y ≥ 0.
By Itô’s formula,

G(Bt ) = G(B0) +
∫ t

0
g(Bs) dBs + 1

2

∫ t

0
g′(s) ds =: G(B0) + Mt + At ,

where G(B0) is an integrable random variable, M is a local martingale and [M,M]t =∫ t

0 g2(Bs) ds ≤ t . Hence, by the Burkholder–Davis–Gundy inequality, E sups≤t |Ms |
is integrable; in particular, M is a martingale. Finally, A is an increasing process and
At ≤ t/2. Therefore, G(B) is a submartingale and, hence, so are the stopped pro-
cesses G(B)T and G(B)Tn . Note that, by construction, the process (B − B0)

Tn is
bounded (by the sum of the lengths of Ik , k ≤ n) for a fixed n. Hence, G(Bt∧Tn) ≤
B+

t∧Tn
≤ B+

0 + sups≤Tn
|Bs −B0|. We conclude that the submartingale G(B)Tn is uni-

formly integrable, hence, G(Bt∧Tn) ≤icx G(BTn) for any n and t . On the other hand,
B+

Tn
≤icx B+

T . Combining, we get [G(Bt∧Tn)]+ ≤icx B+
T for any n and t . We can pass

to the limit as n → ∞ in this inequality, which shows that the family [G(Bt∧T )]+,
t ∈ R+, is uniformly integrable. The claim follows.

Remark 5. It has been already mentioned in the proof of Theorem 5 that the assump-
tions on μ0 and μ in Theorem 11 are equivalent to μ0 ≤icx μ.

Remark 6. Let μ0 and μ satisfy the assumptions of Theorem 11. As a by-product,
we have obtained the following classical characterization of increasing convex order:
there exist random variables X0 and X defined on the same probability space such
that Law(X0) = μ0, Law(X) = μ and

E[X|X0] ≥ X0.

Indeed, take X0 = B0 and X = BT and use the uniform integrability of (B+
Tn

)n≥1 to
obtain the desired inequality.
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