The problem of European-style option pricing in time-changed Lévy models in the presence of compound Poisson jumps is considered. These jumps relate to sudden large drops in stock prices induced by political or economical hits. As the time-changed Lévy models, the variance-gamma and the normal-inverse Gaussian models are discussed. Exact formulas are given for the price of digital asset-or-nothing call option on extra asset in foreign currency. The prices of simpler options can be derived as corollaries of our results and examples are presented. Various types of dependencies between stock prices are mentioned.
We investigate the pricing of cliquet options in a jump-diffusion model. The considered option is of monthly sum cap style while the underlying stock price model is driven by a drifted Lévy process entailing a Brownian diffusion component as well as compound Poisson jumps. We also derive representations for the density and distribution function of the emerging Lévy process. In this setting, we infer semi-analytic expressions for the cliquet option price by two different approaches. The first one involves the probability distribution function of the driving Lévy process whereas the second draws upon Fourier transform techniques. With view on sensitivity analysis and hedging purposes, we eventually deduce representations for several Greeks while putting emphasis on the Vega.
In the paper we consider time-changed Poisson processes where the time is expressed by compound Poisson-Gamma subordinators $G(N(t))$ and derive the expressions for their hitting times. We also study the time-changed Poisson processes where the role of time is played by the processes of the form $G(N(t)+at)$ and by the iteration of such processes.
We investigate the pricing of cliquet options in a geometric Meixner model. The considered option is of monthly sum cap style while the underlying stock price model is driven by a pure-jump Meixner–Lévy process yielding Meixner distributed log-returns. In this setting, we infer semi-analytic expressions for the cliquet option price by using the probability distribution function of the driving Meixner–Lévy process and by an application of Fourier transform techniques. In an introductory section, we compile various facts on the Meixner distribution and the related class of Meixner–Lévy processes. We also propose a customized measure change preserving the Meixner distribution of any Meixner process.
In the paper we study the models of time-changed Poisson and Skellam-type processes, where the role of time is played by compound Poisson-Gamma subordinators and their inverse (or first passage time) processes. We obtain explicitly the probability distributions of considered time-changed processes and discuss their properties.
We deal with a generalization of the classical risk model when an insurance company gets additional funds whenever a claim arrives and consider some practical approaches to the estimation of the ruin probability. In particular, we get an upper exponential bound and construct an analogue to the De Vylder approximation for the ruin probability. We compare results of these approaches with statistical estimates obtained by the Monte Carlo method for selected distributions of claim sizes and additional funds.
The notion of the transportation distance on the set of the Lévy measures on $\mathbb{R}$ is introduced. A Lévy-type process with a given symbol (state dependent analogue of the characteristic triplet) is proved to be well defined as a strong solution to a stochastic differential equation (SDE) under the assumption of Lipschitz continuity of the Lévy kernel in the symbol w.r.t. the state space variable in the transportation distance. As examples, we construct Gamma-type process and α-stable like process as strong solutions to SDEs.