Option pricing in time-changed Lévy models with compound Poisson jumps
Volume 6, Issue 1 (2019), pp. 81–107
Pub. online: 27 November 2018
Type: Research Article
Open Access
Received
14 June 2018
14 June 2018
Revised
3 September 2018
3 September 2018
Accepted
7 November 2018
7 November 2018
Published
27 November 2018
27 November 2018
Abstract
The problem of European-style option pricing in time-changed Lévy models in the presence of compound Poisson jumps is considered. These jumps relate to sudden large drops in stock prices induced by political or economical hits. As the time-changed Lévy models, the variance-gamma and the normal-inverse Gaussian models are discussed. Exact formulas are given for the price of digital asset-or-nothing call option on extra asset in foreign currency. The prices of simpler options can be derived as corollaries of our results and examples are presented. Various types of dependencies between stock prices are mentioned.
References
Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge University Press, Cambridge (2004). MR2072890. https://doi.org/10.1017/CBO9780511755323
Barndorff-Nielsen, O.E.: Normal inverse Gaussian distributions and stochastic volatility modelling. Scand. J. Stat. 24(1), 1–13 (1997). MR1436619. https://doi.org/10.1111/1467-9469.00045
Barndorff-Nielsen, O.E.: Processes of normal inverse Gaussian type. Finance Stoch. 2(1), 41–68 (1998). MR1804664. https://doi.org/10.1007/s007800050032
Barndorff-Nielsen, O.E., Shiryaev, A.N.: Change of Time and Change of Measure. World Scientific, Singapore (2010). MR2779876. https://doi.org/10.1142/7928
Bianchi, M.L., Rachev, S.T., Kim, Y.S., Fabozzi, F.J.: Tempered infinitely divisible distributions and processes. Theory Probab. Appl. 55(1), 2–26 (2011). MR2768518. https://doi.org/10.1137/S0040585X97984632
Cont, R., Tankov, P.: Financial Modeling with Jump Processes. CRC Press, Boca Raton (2004). MR2042661
Eberlein, E.: Fourier based valuation methods in mathematical finance. In: Benth, F., Kholodnyi, V., Laurence, P. (eds.) Quantitative Energy Finance. Springer, Berlin (2014). MR3184349. https://doi.org/10.1007/978-1-4614-7248-3_3
Eberlein, E., Papapantoleon, A., Shiryaev, A.N.: Esscher transform and the duality principle for multidimensional semimartingales. Ann. Appl. Probab. 19, 1944–1971 (2009). MR2569813. https://doi.org/10.1214/09-AAP600
Finlay, R., Seneta, E.: Stationary-increment Student and variance-gamma processes. J. Appl. Probab. 43, 441–453 (2006). MR2248575. https://doi.org/10.1239/jap/1152413733
Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Academic Press, New York (1980). MR0669666
Ivanov, R.V.: Closed form pricing of European options for a family of normal-inverse Gaussian processes. Stoch. Models 29(4), 435–450 (2013). MR3175852. https://doi.org/10.1080/15326349.2013.838509
Ivanov, R.V.: On risk measuring in the variance-gamma model. Stat. Risk. Model. 35(1–2), 23–33 (2018). MR3739384. https://doi.org/10.1515/strm-2017-0008
Ivanov, R.V.: Option pricing in the variance-gamma model under the drift jump. Int. J. Theor. Appl. Finance 21(4), 1–19 (2018). MR3817272. https://doi.org/10.1142/S0219024918500188
Ivanov, R.V., Ano, K.: On exact pricing of fx options in multivariate time-changed Lévy models. Rev. Deriv. Res. 19(3), 201–216 (2016). MR3611537. https://doi.org/10.1007/s11009-015-9461-8
Ivanov, R.V., Temnov, G.: Truncated moment-generating functions of the nig process and their applications. Stoch. Dyn. 17(5), 1–12 (2017). MR3669415. https://doi.org/10.1142/S0219493717500393
Kallsen, J., Shiryaev, A.N.: The cumulant process and Esscher’s change of measure. Finance Stoch. 6, 397–428 (2002). MR1932378. https://doi.org/10.1007/s007800200069
Küchler, U., Tappe, S.: Bilateral gamma distributions and processes in financial mathematics. Stoch. Process. Appl. 118(2), 261–283 (2008). MR2376902. https://doi.org/10.1016/j.spa.2007.04.006
Küchler, U., Tappe, S.: Tempered stable distributions and processes. Stoch. Process. Appl. 123(12), 4256–4293 (2013). MR3096354. https://doi.org/10.1016/j.spa.2013.06.012
Linders, D., Stassen, B.: The multivariate variance gamma model: basket option pricing and calibration. Quant. Finance 16(4), 555–572 (2016). MR3473973. https://doi.org/10.1080/14697688.2015.1043934
Luciano, E., Schoutens, W.: A multivariate jump-driven financial asset model. Quant. Finance 6(5), 385–402 (2016). MR2261218. https://doi.org/10.1080/14697680600806275
Luciano, E., Semeraro, P.: Multivariate time changes for Lévy asset models: Characterization and calibration. J. Comput. Appl. Math. 233, 1937–1953 (2010). MR2564029. https://doi.org/10.1016/j.cam.2009.08.119
Luciano, E., Marena, M., Semeraro, P.: Dependence calibration and portfolio fit with factor-based subordinators. Quant. Finance 16(7), 1–16 (2016). MR3516138. https://doi.org/10.1080/14697688.2015.1114661
Madan, D., Yor, M.: Representing the cgmy and Meixner Lévy processes as time changed Brownian motions. J. Comput. Finance 12(1), 27–47 (2008). MR2504899. https://doi.org/10.21314/JCF.2008.181
Mozumder, S., Sorwar, G., Dowd, K.: Revisiting variance gamma pricing: An application to S&P500 index options. Int. J. Financ. Eng. 2(2), 1–24 (2015). MR3454654. https://doi.org/10.1142/S242478631550022X
Rosinski, J.: Tempering stable processes. Stoch. Process. Appl. 117(6), 667–707 (2007). MR2327834. https://doi.org/10.1016/j.spa.2006.10.003
Rydberg, T.H.: The normal-inverse Gaussian process: simulation and approximation. Stoch. Models 13, 887–910 (2013). MR1482297. https://doi.org/10.1080/15326349708807456
Seneta, E.: The early years of the variance–gamma process. In: Fu, M.C., Jarrow, R., Yen, J.Y., Elliott, R. (eds.) Advances in Mathematical Finance. Birkhauser, Boston (2007). MR2359359. https://doi.org/10.1007/978-0-8176-4545-8_1
Shiryaev, A.N.: Essentials of Stochastic Finance: Facts, Models, Theory. World Scientific, Singapore (1999). MR1695318. https://doi.org/10.1142/9789812385192
Whittaker, E.T., Watson, G.N.: A Course in Modern Analysis, 4th Edition. Cambridge University Press, Cambridge (1990). MR1424469. https://doi.org/10.1017/CBO9780511608759
Yor, M.: Some remarkable properties of gamma processes. In: Fu, M.C., Jarrow, R., Yen, J.Y., Elliott, R. (eds.) Advances in Mathematical Finance. Birkhauser, Boston (2007). MR2359361. https://doi.org/10.1007/978-0-8176-4545-8_3