The existence and uniqueness of the global positive solution are proved for the system of stochastic differential equations describing a two-species Lotka–Volterra mutualism model disturbed by white noise, centered and noncentered Poisson noises. For the considered system, sufficient conditions of stochastic ultimate boundedness, stochastic permanence, nonpersistence and strong persistence in the mean are obtained.
A solution is given to generalized backward stochastic differential equations driven by a real-valued RCLL martingale on an arbitrary filtered probability space. The existence and uniqueness of a solution are proved via the Yosida approximation method when the generators are only stochastic monotone with respect to the y-variable and stochastic Lipschitz with respect to the z-variable, with different linear growth conditions.
In this article, a non-Gaussian long memory process is constructed by the aggregation of independent copies of a fractional Lévy Ornstein–Uhlenbeck process with random coefficients. Several properties and a limit theorem are studied for this new process. Finally, some simulations of the limit process are shown.
Reflected generalized backward stochastic differential equations (BSDEs) with one discontinuous barrier are investigated when the noise is driven by a Brownian motion and an independent Poisson measure. The existence and uniqueness of the solution are derived when the generators are monotone and the barrier is right-continuous with left limits (rcll). The link is established between this solution and a viscosity solution for an obstacle problem of integral-partial differential equations with nonlinear Neumann boundary conditions.
The paper presents a characterization of equilibrium in a game-theoretic description of discounting conditional stochastic linear-quadratic (LQ for short) optimal control problem, in which the controlled state process evolves according to a multidimensional linear stochastic differential equation, when the noise is driven by a Poisson process and an independent Brownian motion under the effect of a Markovian regime-switching. The running and the terminal costs in the objective functional are explicitly dependent on several quadratic terms of the conditional expectation of the state process as well as on a nonexponential discount function, which create the time-inconsistency of the considered model. Open-loop Nash equilibrium controls are described through some necessary and sufficient equilibrium conditions. A state feedback equilibrium strategy is achieved via certain differential-difference system of ODEs. As an application, we study an investment–consumption and equilibrium reinsurance/new business strategies for mean-variance utility for insurers when the risk aversion is a function of current wealth level. The financial market consists of one riskless asset and one risky asset whose price process is modeled by geometric Lévy processes and the surplus of the insurers is assumed to follow a jump-diffusion model, where the values of parameters change according to continuous-time Markov chain. A numerical example is provided to demonstrate the efficacy of theoretical results.
The existence and uniqueness of a global positive solution is proven for the system of stochastic differential equations describing a nonautonomous stochastic predator–prey model with a modified version of the Leslie–Gower term and Holling-type II functional response disturbed by white noise, centered and noncentered Poisson noises. Sufficient conditions are obtained for stochastic ultimate boundedness, stochastic permanence, nonpersistence in the mean, weak persistence in the mean and extinction of a solution to the considered system.
In this paper, a solution is given to reflected backward doubly stochastic differential equations when the barrier is not necessarily right-continuous, and the noise is driven by two independent Brownian motions and an independent Poisson random measure. The existence and uniqueness of the solution is shown, firstly when the coefficients are stochastic Lipschitz, and secondly by weakening the conditions on the stochastic growth coefficient.
A new multi-factor short rate model is presented which is bounded from below by a real-valued function of time. The mean-reverting short rate process is modeled by a sum of pure-jump Ornstein–Uhlenbeck processes such that the related bond prices possess affine representations. Also the dynamics of the associated instantaneous forward rate is provided and a condition is derived under which the model can be market-consistently calibrated. The analytical tractability of this model is illustrated by the derivation of an explicit plain vanilla option price formula. With view on practical applications, suitable probability distributions are proposed for the driving jump processes. The paper is concluded by presenting a post-crisis extension of the proposed short and forward rate model.
The existence and uniqueness are proved for the global positive solution to the system of stochastic differential equations describing a two-species mutualism model disturbed by the white noise, the centered and non-centered Poisson noises. We obtain sufficient conditions for stochastic ultimate boundedness, stochastic permanence, nonpersistence in the mean, strong persistence in the mean and extinction of the solution to the considered system.
The problem of European-style option pricing in time-changed Lévy models in the presence of compound Poisson jumps is considered. These jumps relate to sudden large drops in stock prices induced by political or economical hits. As the time-changed Lévy models, the variance-gamma and the normal-inverse Gaussian models are discussed. Exact formulas are given for the price of digital asset-or-nothing call option on extra asset in foreign currency. The prices of simpler options can be derived as corollaries of our results and examples are presented. Various types of dependencies between stock prices are mentioned.