Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 11, Issue 1 (2024)
  4. Generalized BSDEs driven by RCLL marting ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Generalized BSDEs driven by RCLL martingales with stochastic monotone coefficients
Volume 11, Issue 1 (2024), pp. 109–128
Badr Elmansouri ORCID icon link to view author Badr Elmansouri details   Mohamed El Otmani ORCID icon link to view author Mohamed El Otmani details  

Authors

 
Placeholder
https://doi.org/10.15559/23-VMSTA239
Pub. online: 5 December 2023      Type: Research Article      Open accessOpen Access

Received
4 July 2023
Revised
4 November 2023
Accepted
22 November 2023
Published
5 December 2023

Abstract

A solution is given to generalized backward stochastic differential equations driven by a real-valued RCLL martingale on an arbitrary filtered probability space. The existence and uniqueness of a solution are proved via the Yosida approximation method when the generators are only stochastic monotone with respect to the y-variable and stochastic Lipschitz with respect to the z-variable, with different linear growth conditions.

References

[1] 
Barles, G., Buckdahn, R., Pardoux, E.: Backward stochastic differential equations and integral-partial differential equations. Stoch. Int. J. Probab. Stoch. Process. 60(1-2), 57–83 (1997). MR1436432. https://doi.org/10.1080/17442509708834099
[2] 
Bender, C., Kohlmann, M.: BSDEs with stochastic Lipschitz condition. Technical report, CoFE Discussion Paper (2000). https://www.econstor.eu/bitstream/10419/85163/1/dp00-08.pdf
[3] 
Bismut, J.M.: Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl. 44(2), 384–404 (1973). MR0329726. https://doi.org/10.1016/0022-247X(73)90066-8
[4] 
Carbone, R., Ferrario, B., Santacroce, M.: Backward stochastic differential equations driven by càdlàg martingales. Theory Probab. Appl. 52(2), 304–314 (2008). MR2742510. https://doi.org/10.1137/S0040585X97983055
[5] 
El Karoui, N., Huang, S.: A general result of existence and uniqueness of backward stochastic differential equations. In: Backward Stochastic Differential Equations (Paris, 1995–1996). Pitman Research Notes in Mathematics Series, vol. 364, pp. 27–38 (1997). MR1752673
[6] 
El Otmani, M.: Generalized BSDE driven by a Lévy process. J. Appl. Math. Stoch. Anal. 2006, 85407 (2006). MR2253532. https://doi.org/10.1155/JAMSA/2006/85407
[7] 
Hu, Y.: On the solution of forward–backward sdes with monotone and continuous coefficients. Nonlinear Anal. 42(1), 1–12 (2000). MR1769248. https://doi.org/10.1016/S0362-546X(98)00315-0
[8] 
Hu, Y., Peng, S.: Solution of forward-backward stochastic differential equations. Probab. Theory Relat. Fields 103, 273–283 (1995). MR1355060. https://doi.org/10.1007/BF01204218
[9] 
Jacod, J., Shiryaev, A.: Limit Theorems for Stochastic Processes, vol. 288. Springer, Berlin (2013). MR0959133. https://doi.org/10.1007/978-3-662-02514-7
[10] 
Nie, T., Rutkowski, M.: Bsdes driven by multidimensional martingales and their applications to markets with funding costs. Theory Probab. Appl. 60(4), 604–630 (2016). MR3583450. https://doi.org/10.1137/S0040585X97T987880
[11] 
Nie, T., Rutkowski, M.: Existence, uniqueness and strict comparison theorems for BSDEs driven by RCLL martingales. Probab. Uncertain. Quant. Risk 6(4), 319–342 (2021). MR4399893. https://doi.org/10.3934/puqr.2021016
[12] 
Pardoux, E.: Generalized discontinuous backward stochastic differential equations. In: Backward Stochastic Differential Equations (Paris, 1995–1996). Pitman Research Notes in Mathematics Series, vol. 364, pp. 207–219 (1997). MR1752684. https://doi.org/10.1016/S0377-0427(97)00124-6
[13] 
Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14(1), 55–61 (1990). MR1037747. https://doi.org/10.1016/0167-6911(90)90082-6
[14] 
Pardoux, E., Râs,canu, A.: Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, vol. 69. Springer, Switzerland (2014). MR3308895. https://doi.org/10.1007/978-3-319-05714-9
[15] 
Pardoux, E., Zhang, S.: Generalized BSDEs and nonlinear Neumann boundary value problems. Probab. Theory Relat. Fields 110, 535–558 (1998). MR1626963. https://doi.org/10.1007/s004400050158
[16] 
Protter, P.E.: Stochastic Integration and Differential Equations. Applications of Mathematics, 2nd edn. Springer, Berlin (2004). MR2020294
[17] 
Situ, R.: On solutions of backward stochastic differential equations with jumps and applications. Stoch. Process. Appl. 66(2), 209–236 (1997). MR1440399. https://doi.org/10.1016/S0304-4149(96)00120-2
[18] 
Tang, S., Li, X.: Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control Optim. 32(5), 1447–1475 (1994). MR1288257. https://doi.org/10.1137/S0363012992233858

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2024 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Generalized BSDEs with jumps RCLL martingale stochastic monotone coefficient stochastic Lipschitz coefficient Yosida approximation

MSC2010
60H05 60H10 60H15 34F05 60H30 35R60

Funding
This research was supported by the National Center for Scientific and Technical Research (CNRST), Morocco.

Metrics
since March 2018
616

Article info
views

200

Full article
views

199

PDF
downloads

72

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy