A solution is given to generalized backward stochastic differential equations driven by a real-valued RCLL martingale on an arbitrary filtered probability space. The existence and uniqueness of a solution are proved via the Yosida approximation method when the generators are only stochastic monotone with respect to the y-variable and stochastic Lipschitz with respect to the z-variable, with different linear growth conditions.
In this paper, we study the stochastic three-dimensional modified Leray-alpha model arising from the turbulent flows of fluids. We prove the existence of the probabilistic weak solution under the non-Lipschitz condition for the nonlinear forcing terms. We also discuss its uniqueness.
This paper investigates sample paths properties of φ-sub-Gaussian processes by means of entropy methods. Basing on a particular entropy integral, we treat the questions on continuity and the rate of growth of sample paths. The obtained results are then used to investigate the sample paths properties for a particular class of φ-sub-Gaussian processes related to the random heat equation. We derive the estimates for the distribution of suprema of such processes and evaluate their rate of growth.
In the paper we consider higher-order partial differential equations from the class of linear dispersive equations. We investigate solutions to these equations subject to random initial conditions given by harmonizable φ-sub-Gaussian processes. The main results are the bounds for the distributions of the suprema for solutions. We present the examples of processes for which the assumptions of the general result are verified and bounds are written in the explicit form. The main result is also specified for the case of Gaussian initial condition.
For a class of non-autonomous parabolic stochastic partial differential equations defined on a bounded open subset $D\subset {\mathbb{R}^{d}}$ and driven by an ${L^{2}}(D)$-valued fractional Brownian motion with the Hurst index $H>1/2$, a new result on existence and uniqueness of a mild solution is established. Compared to the existing results, the uniqueness in a fully nonlinear case is shown, not assuming the coefficient in front of the noise to be affine. Additionally, the existence of moments for the solution is established.
with random source f. The latter is, in certain sense, a symmetric α-stable spatial white noise multiplied by some regular function σ. We define a candidate solution U to the equation via Poisson’s formula and prove that the corresponding expression is well defined at each point almost surely, although the exceptional set may depend on the particular point $(x,t)$. We further show that U is Hölder continuous in time but with probability 1 is unbounded in any neighborhood of each point where σ does not vanish. Finally, we prove that U is a generalized solution to the equation.