Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 8, Issue 1 (2021)
  4. Existence and uniqueness of weak solutio ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Cited by
  • More
    Article info Full article Cited by

Existence and uniqueness of weak solution to a three-dimensional stochastic modified-Leray-alpha model of fluid turbulence
Volume 8, Issue 1 (2021), pp. 115–137
Ridha Selmi   Rim Nasfi  

Authors

 
Placeholder
https://doi.org/10.15559/21-VMSTA175
Pub. online: 16 March 2021      Type: Research Article      Open accessOpen Access

Received
9 August 2020
Revised
27 February 2021
Accepted
27 February 2021
Published
16 March 2021

Abstract

In this paper, we study the stochastic three-dimensional modified Leray-alpha model arising from the turbulent flows of fluids. We prove the existence of the probabilistic weak solution under the non-Lipschitz condition for the nonlinear forcing terms. We also discuss its uniqueness.

References

[1] 
Bensoussan, A.: Some existence results for stochastic partial differential equation. Stochastic Partial Differential Equations and Applications (Trento, 1990), Pitman Res. Notes Math. Ser., vol. 268. Longman Sci. Tech., Harlow, UK, 37–53 (1992). MR1222687
[2] 
Bensoussan, A.: Stochastic Navier-Stokes equations. Acta Appl. Math. 38, 267–304 (1995). MR1326637. https://doi.org/10.1007/BF00996149
[3] 
Bensoussan, A., Temam, R.: Équations stochastiques du type Navier-Stokes. J. Funct. Anal. 13, 195–222 (1973). MR0348841. https://doi.org/10.1016/0022-1236(73)90045-1
[4] 
Billingsley, P.: Probability and Measure, 3rd edn. Wiley (1995). MR1324786
[5] 
Caraballo, T., Real, J., Taniguchi, T.: The existence and uniqueness of solutions to stochastic three-dimensional Lagrangian averaged Navier-Stokes equations. Proc. R. Soc. A 462, 459–479 (2006). MR2269674. https://doi.org/10.1098/rspa.2005.1574
[6] 
Chaabani, A., Nasfi, R., Selmi, R., Zaabi, M.: Well-posedness and convergence results for strong solution to a 3D-regularized Boussinesq system. Math. Methods Appl. Sci. (2016). https://doi.org/10.1002/mma.3950
[7] 
Chen, S., Foias, C., Holm, D.D., Olson, E., Titi, E.S., Wynne, S.: A connection between the Camassa-Holm equations and turbulent flows in channels and pipes. Phys. Fluids 11, 2343–2353 (1999). MR1719962. https://doi.org/10.1063/1.870096
[8] 
Cheskidov, A., Holm, D.D., Olson, E., Titi, E.S.: On a Leray-α model of turbulence. Proc. R. Soc. A 461, 629–649 (2005). MR2121928. https://doi.org/10.1098/rspa.2004.1373
[9] 
Constantin, P., Foias, C.: Navier-Stokes Equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL (1988). MR0972259
[10] 
Deugoué, G., Sango, M.: On the stochastic 3D Navier-Stokes-α model of fluids turbulence. Abstr. Appl. Anal., Article ID 723236 (2009). 27 pp. MR2563999. https://doi.org/10.1155/2009/723236
[11] 
Fang, S., Qiu, H.: Stochastic simplified Bardina turbulent model: existence of weak solution. Acta Math. Sci. 34, 1041–1054 (2014). MR3209660. https://doi.org/10.1016/S0252-9602(14)60068-0
[12] 
Ilyin, A.A., Lunasin, E.M., Titi, E.S.: A modified-Leray-α subgrid scale model of turbulence. Nonlinearity 19, 879–897 (2006). MR2214948. https://doi.org/10.1088/0951-7715/23/9/006
[13] 
Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics, vol. 113. Springer, New York (1988). MR0917065. https://doi.org/10.1007/978-1-4684-0302-2
[14] 
Krylov, N.V., Rozovskii, B.L.: Stochastic evolution equations. J. Sov. Math. 16, 1233–1277 (1981). MR570795. https://doi.org/10.1007/BF01084893
[15] 
Langa, J.A., Real, J., Simon, J.: Existence and regularity of the pressure for the stochastic Navier-Stokes equations. Appl. Math. Optim. 48, 195–210 (2003). MR2004282. https://doi.org/10.1007/s00245-003-0773-7
[16] 
Li, P.: Geometric Analysis. Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (2012). MR2962229. https://doi.org/10.1017/CBO9781139105798
[17] 
Mohan, M.T.: Global strong solutions of the stochastic three dimensional inviscid simplified bardina turbulence model. Commun. Stoch. Anal. 12 (2019). Article 3. MR3939455. https://doi.org/10.31390/cosa.12.3.03
[18] 
Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Difierential Equations. Lecture notes in Mathematics, vol. 1905. Springer, Berlin (2007). MR2329435
[19] 
Prohorov, Y.V.: Convergence of random processes and limit theorems in probability theory (in russian). Teor. Veroâtn. Primen. 1, 177–238 (1956). MR0084896. https://doi.org/10.1137/1101016
[20] 
Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987). MR0924157
[21] 
Selmi, R.: Global well-posedness and convergence results for the 3D-regularized Boussinesq system. Can. J. Math. 64, 1415–1435 (2012). MR2994672. https://doi.org/10.4153/CJM-2012-013-5
[22] 
Selmi, R., Nasfi, R.: The asymptotic behaviour of the weak solutions to the three-dimensional stochastic modified-Leray-alpha model. Submitted.
[23] 
Selmi, R., Nasfi, R.: Mixing and limit theorems for a damped nonlinear wave equation with space-time localised noise. Analysis, Probability, Applications, and Computation, Trends in Mathematics. Birkhäuser, Cham, 221–229 (2019). https://doi.org/10.1007/978-3-030-04459-6_21
[24] 
Selmi, R., Zaabi, M.: Analytical study to a 3D-regularized Boussinesq system. Mem. Differ. Equ. Math. Phys. 79, 93–105 (2020). https://www.emis.de/journals/MDEMP/vol79/vol79-6.pdf. MR4088039
[25] 
Skorokhod, A.V.: Limit theorems for stochastic processes. Teor. Veroâtn. Primen. 1, 289–319 (1956). MR0084897. https://doi.org/10.1137/1101022
[26] 
Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis. Studies in Mathematics and its Applications, vol. 2. North-Holland publishing company, Amsterdam (1977). MR0609732

Full article Cited by PDF XML
Full article Cited by PDF XML

Copyright
© 2021 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Stochastic modified-Leray-alpha model existence, uniqueness, weak probabilistic solution

MSC2010
35R60 (primary) 76D05 (secondary) 76D03 (secondary) 60H35 (secondary)

Metrics
since March 2018
635

Article info
views

401

Full article
views

394

PDF
downloads

134

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy