The paper presents an analytical proof demonstrating that the Sandwiched Volterra Volatility (SVV) model is able to reproduce the power-law behavior of the at-the-money implied volatility skew, provided the correct choice of the Volterra kernel. To obtain this result, the second-order Malliavin differentiability of the volatility process is assessed and the conditions that lead to explosive behavior in the Malliavin derivative are investigated. As a supplementary result, a general Malliavin product rule is proved.
In this paper, we study the stochastic three-dimensional modified Leray-alpha model arising from the turbulent flows of fluids. We prove the existence of the probabilistic weak solution under the non-Lipschitz condition for the nonlinear forcing terms. We also discuss its uniqueness.
The article is devoted to the estimation of the convergence rate of integral functionals of a Markov process. Under the assumption that the given Markov process admits a transition probability density differentiable in t and the derivative has an integrable upper bound of a certain type, we derive the accuracy rates for strong and weak approximations of the functionals by Riemannian sums. We also develop a version of the parametrix method, which provides the required upper bound for the derivative of the transition probability density for a solution of an SDE driven by a locally stable process. As an application, we give accuracy bounds for an approximation of the price of an occupation time option.
In this paper, we provide strong $L_{2}$-rates of approximation of the integral-type functionals of Markov processes by integral sums. We improve the method developed in [2]. Under assumptions on the process formulated only in terms of its transition probability density, we get the accuracy that coincides with that obtained in [3] for a one-dimensional diffusion process.
We provide strong $L_{p}$-rates of approximation of nonsmooth integral-type functionals of Markov processes by integral sums. Our approach is, in a sense, process insensitive and is based on a modification of some well-developed estimates from the theory of continuous additive functionals of Markov processes.