Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 8, Issue 1 (2021)
  4. Investigation of sample paths properties ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Investigation of sample paths properties for some classes of φ-sub-Gaussian stochastic processes
Volume 8, Issue 1 (2021), pp. 41–62
Olha Hopkalo   Lyudmyla Sakhno  

Authors

 
Placeholder
https://doi.org/10.15559/21-VMSTA171
Pub. online: 26 January 2021      Type: Research Article      Open accessOpen Access

Received
7 September 2020
Revised
21 December 2020
Accepted
7 January 2021
Published
26 January 2021

Abstract

This paper investigates sample paths properties of φ-sub-Gaussian processes by means of entropy methods. Basing on a particular entropy integral, we treat the questions on continuity and the rate of growth of sample paths. The obtained results are then used to investigate the sample paths properties for a particular class of φ-sub-Gaussian processes related to the random heat equation. We derive the estimates for the distribution of suprema of such processes and evaluate their rate of growth.

References

[1] 
Anh, V.V., Leonenko, N.N.: Non-Gaussian scenarios for the heat equation with singular initial data. Stoch. Process. Appl. 84, 91–114 (1999). MR1720100. https://doi.org/10.1016/S0304-4149(99)00053-8
[2] 
Beghin, L., Kozachenko, Yu., Orsingher, E., Sakhno, L.: On the Solutions of Linear Odd-Order Heat-Type Equations with Random Initial Conditions. J. Stat. Phys. 127(4), 721–739 (2007). MR2319850. https://doi.org/10.1007/s10955-007-9309-x
[3] 
Beghin, L., Orsingher, E., Sakhno, L.: Equations of Mathematical Physics and Compositions of Brownian and Cauchy Processes. Stoch. Anal. Appl. 29, 551–569 (2011). MR2812517. https://doi.org/10.1080/07362994.2011.581071
[4] 
Buldygin, V.V., Kozachenko, Yu.V.: Metric Characterization of Random Variables and Random Processes. American Mathematical Society, Providence, RI (2000). 257 p. MR1743716. https://doi.org/10.1090/mmono/188
[5] 
Giuliano Antonini, R., Kozachenko, Yu.V., Nikitina, T.: Spaces of φ-subgaussian random variables. Rendiconti Accademia Nazionale delle Scienze XL. Memorie di Matematica e Applicazioni 121, XXVII, 95–124 (2003). MR2056414
[6] 
Dozzi, M., Kozachenko, Yu., Mishura, Yu., Ralchenko, K.: Asymptotic growth of trajectories of multifractional Brownian motion with statistical applications to drift parameter estimation. Stat. Inference Stoch. Process. 21(1), 21–52 (2018). MR3769831. https://doi.org/10.1007/s11203-016-9147-z
[7] 
Dudley, R.M.: The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Funct. Anal. 1, 290–330 (1967). MR0220340. https://doi.org/10.1016/0022-1236(67)90017-1
[8] 
Dudley, R.M.: Uniform Central Limit Theorems. Cambridge Studies in Advanced Mathematics, vol. 63. Cambridge University Press, Cambridge (1999). 452 p. MR1720712. https://doi.org/10.1017/CBO9780511665622
[9] 
Fernique, X.: Régularité des trajectoires des fonctions aléatoires gaussiennes. In: Ecole d’Eté de Probabilités de Saint-Flour, IV-1974. Lecture Notes in Math., vol. 480, pp. 1–96. Springer, Berlin (1975). MR0413238
[10] 
Kampé de Feriet, J.: Random solutions of the partial differential equations. In: Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability, vol. III, pp. 199–208. University of California Press, Berkeley (1955). MR0084927
[11] 
Kozachenko, Yu.V., Koval’chuk, Yu.A.: Boundary value problems with random initial conditions and series of functions of $Su{b_{\varphi }}(\Omega )$. Ukr. Math. J. 50(4), 572–585 (1998). MR1698149. https://doi.org/10.1007/BF02487389
[12] 
Kozachenko, Yu., Melnikov, A., Mishura, Yu.: On drift parameter estimation in models with fractional Brownian motion. Statistics 49(1), 35–62 (2015). MR3304366. https://doi.org/10.1080/02331888.2014.907294
[13] 
Kozachenko, Yu.V., Leonenko, G.M.: Large deviations type inequality for the supremum of the heat random field. Methods Funct. Anal. Topol. 8(3), 46–49 (2002). MR1926910
[14] 
Kozachenko, Yu.V., Leonenko, G.M.: Extremal behavior of the heat random field. Extremes 8, 191–205 (2006). MR2275918. https://doi.org/10.1007/s10687-006-7967-8
[15] 
Kozachenko, Yu.V., Ostrovskij, E.I.: Banach spaces of random variables of sub-Gaussian type. Theory Probab. Math. Stat. 32, 45–56 (1986). MR0882158
[16] 
Kozachenko, Yu., Orsingher, E., Sakhno, L., Vasylyk, O.: Estimates for functionals of solutions to Higher-Order Heat-Type equations with random initial conditions. J. Stat. Phys. 172(6), 1641–1662 (2018). MR3856958. https://doi.org/10.1007/s10955-018-2111-0
[17] 
Kozachenko, Yu., Orsingher, E., Sakhno, L., Vasylyk, O.: Estimates for distribution of suprema of solutions to higher-order partial differential equations with random initial conditions. Mod. Stoch. Theory Appl. 7(1), 79–96 (2020). MR4085677. https://doi.org/10.15559/19-vmsta146
[18] 
Kozachenko, Yu., Rozora, I.: Sample continuity conditions with probability one for square-Gaussian stochastic processes. Theory Probab. Math. Stat. 101, 153–166 (2020). https://doi.org/10.1090/tpms/1118
[19] 
Kozachenko, Yu.V., Slivka, G.I.: Justification of the Fourier method for hyperbolic equations with random initial conditions. Theory Probab. Math. Stat. 69, 67–83 (2004). MR2110906. https://doi.org/10.1090/S0094-9000-05-00615-0
[20] 
Kozachenko, Yu.V., Slyvka-Tylyshchak, A.I.: On the increase rate of random fields from space ${\mathrm{Sub}_{\varphi }}(\Omega )$ on unbounded domains. Stat. Optim. Inf. Comput. 2(2), 79–92 (2014). MR3351372. https://doi.org/10.19139/45
[21] 
Ledoux, M., Talagrand, M.: Probability in a Banach Space: Isoperimetry and Processes. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 23. Springer, Berlin (1991). 482 p. MR1102015. https://doi.org/10.1007/978-3-642-20212-4
[22] 
Ledoux, M.: Isoperimetry and Gaussian Analysis. Lecture Notes in Mathematics, vol. 1648, pp. 165–294. Springer (1996). MR1600888. https://doi.org/10.1007/BFb0095676
[23] 
Leonenko, N.N., Woyczynski, W.A.: Scaling limits of solution of the heat equation for singular non-Gaussian data. J. Stat. Phys. 91(1–2), 423–438 (1998). MR1632518. https://doi.org/10.1023/A:1023060625577
[24] 
Orsingher, E., Beghin, L.: Time-fractional equations and telegraph processes with Brownian time. Probab. Theory Relat. Fields 128, 141–160 (2004). MR2027298. https://doi.org/10.1007/s00440-003-0309-8
[25] 
Orsingher, E., Beghin, L.: Fractional diffusion equations and processes with randomly-varying time. Ann. Probab. 37(1), 206–249 (2009). MR2489164. https://doi.org/10.1214/08-AOP401
[26] 
Rosenblatt, M.: Remarks on the Burgers Equation. J. Math. Phys. 9, 1129–1136 (1968). MR0264252. https://doi.org/10.1063/1.1664687
[27] 
Talagrand, M.: The Generic Chaining. Upper and Lower Bounds of Stochastic Processes. Springer Monographs in Mathematics. Springer, Berlin (2005). 222 p. MR2133757
[28] 
Talagrand, M.: Upper and Lower Bounds for Stochastic Processes. Modern Methods and Classical Problems. Springer, Berlin, Heidelberg (2014). 626 p. MR3184689. https://doi.org/10.1007/978-3-642-54075-2
[29] 
Vasylyk, O.I., Kozachenko Yu, V., Yamnenko, R.E.: φ-sub-Gaussian random processes. Vydavnycho-Poligrafichnyi Tsentr, Kyivskyi Universytet, Kyiv (2008). ISBN 978-966-439-051-1, 231 p. (In Ukrainian)

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2021 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
φ-sub-Gaussian processes distribution of sumpremum rate of growth entropy methods heat equation random initial conditions

MSC2010
35G10 35R60 60G20 60G60

Metrics
since March 2018
544

Article info
views

326

Full article
views

372

PDF
downloads

130

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy