Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 7, Issue 1 (2020)
  4. Estimates for distribution of suprema of ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Estimates for distribution of suprema of solutions to higher-order partial differential equations with random initial conditions
Volume 7, Issue 1 (2020), pp. 79–96
Yuriy Kozachenko   Enzo Orsingher   Lyudmyla Sakhno   Olga Vasylyk ORCID icon link to view author Olga Vasylyk details  

Authors

 
Placeholder
https://doi.org/10.15559/19-VMSTA146
Pub. online: 17 December 2019      Type: Research Article      Open accessOpen Access

Received
25 July 2019
Revised
10 October 2019
Accepted
16 November 2019
Published
17 December 2019

Abstract

In the paper we consider higher-order partial differential equations from the class of linear dispersive equations. We investigate solutions to these equations subject to random initial conditions given by harmonizable φ-sub-Gaussian processes. The main results are the bounds for the distributions of the suprema for solutions. We present the examples of processes for which the assumptions of the general result are verified and bounds are written in the explicit form. The main result is also specified for the case of Gaussian initial condition.

References

[1] 
Beghin, L., Knopova, V.P., Leonenko, N.N., Orsingher, E.: Gaussian limiting behavior of the rescaled solution to the linear Korteweg-de-Vries equation with random initial conditions. J. Stat. Phys. 99(3/4), 769–781 (2000). MR1766908. https://doi.org/10.1023/A:1018687327580
[2] 
Beghin, L., Kozachenko, Yu., Orsingher, E., Sakhno, L.: On the Solutions of Linear Odd-Order Heat-Type Equations with Random Initial Conditions. J. Stat. Phys. 127(4), 721–739 (2007). MR2319850. https://doi.org/10.1007/s10955-007-9309-x
[3] 
Buldygin, V.V., Kozachenko, Yu.V.: Metric characterization of random variables and random processes. Translations of Mathematical Monographs, vol. 188. AMS, American Mathematical Society, Providence, RI (2000). 257 pp. MR1743716
[4] 
Giuliano Antonini, R., Kozachenko, Yu.V., Nikitina, T.: Spaces of φ-subgaussian random variables. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 121 XXVII, 95–124 (2003). MR2056414
[5] 
Kozachenko, Yu.V., Koval’chuk, Yu.A.: Boundary value problems with random initial conditions and series of functions of ${\mathit{Sub}_{\varphi }}(\Omega )$. Ukr. Math. J. 50(4), 572–585 (1998). MR1698149. https://doi.org/10.1007/BF02487389
[6] 
Kozachenko, Yu., Olenko, A.: Whitaker-Kotelnikov-Shanon approximation of φ-sub-Gaussian random processes. J. Math. Anal. Appl. 442(2), 924–946 (2016). MR3514327. https://doi.org/10.1016/j.jmaa.2016.05.052
[7] 
Kozachenko, Yu., Orsingher, E., Sakhno, L., Vasylyk, O.: Estimates for Functionals of Solutions to Higher-Order Heat-Type Equations with Random Initial Conditions. J. Stat. Phys. 172(6), 1641–1662 (2018). MR3856958. https://doi.org/10.1007/s10955-018-2111-0
[8] 
Kozachenko, Yu.V., Ostrovskij, E.I.: Banach spaces of random variables of sub-Gaussian type. Theory Probab. Math. Stat. 32, 45–56 (1986). MR0882158
[9] 
Kozachenko, Yu.V., Rozora, I.V.: Simulation of Gaussian stochastic processes. Random Oper. Stoch. Equ. 11(3), 275–296 (2003). MR2009187. https://doi.org/10.1163/156939703771378626
[10] 
Kozachenko, Yu.V., Rozora, I., Pogorilyak, O.O., Tegza, A.M.: Simulation of Stochastic Processes with Given Accuracy and Reliability. ISTE Press Ltd, London and Elsevier Ltd, Oxford (2017). 346 p. MR3644192
[11] 
Krasnosel’skii, M.A., Rutickii, Ya.B.: Convex Functions and Orlicz Spaces. NoordHoff, Groningen (1961). 249 p. MR0126722
[12] 
Loève, M.: Probability Theory. Foundations. Random sequences. D. van Nostrand Co., Inc. XV, New York (1955). 515 p. MR0066573
[13] 
Orsingher, E., D’Ovidio, M.: Probabilistic representation of fundamental solutions to $\frac{\partial u}{\partial t}={\kappa _{m}}\frac{{\partial ^{m}}u}{\partial {x^{m}}}$. Electron. Commun. Probab. 17, 1–12 (2012). MR2965747. https://doi.org/10.1214/ECP.v17-1885
[14] 
Rao, M.M.: Harmonizable, Cramér, and Karhunen classes of processes. In: Hannan, D.E.J., et al. (eds.) Handbook of Statistics: Time Series in Time, vol. 5, pp. 279–310. Elsevier, Amsterdam (1985). MR0831752. https://doi.org/10.1016/S0169-7161(85)05012-X
[15] 
Swift, R.J.: Covariance analysis and associated spectra for classes of nonstationary processes. J. Stat. Plan. Inference 100(2), 145–157 (2002). MR1877184. https://doi.org/10.1016/S0378-3758(01)00129-X
[16] 
Tao, T.: Nonlinear Dispersive Equations: Local and Global Analysis. CBMS Regional Conference Series in Mathematics, vol. 106, American Mathematical Soc. (2006). 373 pp. MR2233925. https://doi.org/10.1090/cbms/106
[17] 
Vasylyk, O.I., Kozachenko, Yu.V., Yamnenko, R.: Upper estimate of overrunning by $Su{b_{\varphi }}(\Omega )$ random process the level specified by continuous function. Random Oper. Stoch. Equ. 13(2), 111–128 (2005). MR2152102. https://doi.org/10.1163/156939705323383832

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2020 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Higher-order dispersive equations random initial conditions harmonizable processes sub-Gaussian processes distribution of sumpremum of solution entropy methods

MSC2010
35G10 35R60 60G20 60G60

Metrics
since March 2018
681

Article info
views

443

Full article
views

499

PDF
downloads

173

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy