A new modified Φ-Sobolev inequality for canonical ${L^{2}}$-Lévy processes, which are hybrid cases of the Brownian motion and pure jump-Lévy processes, is developed. Existing results included only a part of the Brownian motion process and pure jump processes. A generalized version of the Φ-Sobolev inequality for the Poisson and Wiener spaces is derived. Furthermore, the theorem can be applied to obtain concentration inequalities for canonical Lévy processes. In contrast to the measure concentration inequalities for the Brownian motion alone or pure jump Lévy processes alone, the measure concentration inequalities for canonical Lévy processes involve Lambert’s W-function. Examples of inequalities are also presented, such as the supremum of Lévy processes in the case of mixed Brownian motion and Poisson processes.
Let $\{L(t),t\ge 0\}$ be a Lévy process with representative random variable $L(1)$ defined by the infinitely divisible logarithmic series distribution. We study here the transition probability and Lévy measure of this process. We also define two subordinated processes. The first one, $Y(t)$, is a Negative-Binomial process $X(t)$ directed by Gamma process. The second process, $Z(t)$, is a Logarithmic Lévy process $L(t)$ directed by Poisson process. For them, we prove that the Bernstein functions of the processes $L(t)$ and $Y(t)$ contain the iterated logarithmic function. In addition, the Lévy measure of the subordinated process $Z(t)$ is a shifted Lévy measure of the Negative-Binomial process $X(t)$. We compare the properties of these processes, knowing that the total masses of corresponding Lévy measures are equal.
The problem of European-style option pricing in time-changed Lévy models in the presence of compound Poisson jumps is considered. These jumps relate to sudden large drops in stock prices induced by political or economical hits. As the time-changed Lévy models, the variance-gamma and the normal-inverse Gaussian models are discussed. Exact formulas are given for the price of digital asset-or-nothing call option on extra asset in foreign currency. The prices of simpler options can be derived as corollaries of our results and examples are presented. Various types of dependencies between stock prices are mentioned.
We study the frequency process $f_{1}$ of the block of 1 for a Ξ-coalescent Π with dust. If Π stays infinite, $f_{1}$ is a jump-hold process which can be expressed as a sum of broken parts from a stick-breaking procedure with uncorrelated, but in general non-independent, stick lengths with common mean. For Dirac-Λ-coalescents with $\varLambda =\delta _{p}$, $p\in [\frac{1}{2},1)$, $f_{1}$ is not Markovian, whereas its jump chain is Markovian. For simple Λ-coalescents the distribution of $f_{1}$ at its first jump, the asymptotic frequency of the minimal clade of 1, is expressed via conditionally independent shifted geometric distributions.
where A is a continuous additive functional of X associated with some signed measure. Under the assumption that X admits a transition probability density that possesses upper and lower bounds of certain type, we show that the kernel corresponding to ${T_{t}^{A}}$ possesses the density ${p_{t}^{A}}(x,y)$ with respect to the Lebesgue measure and construct upper and lower bounds for ${p_{t}^{A}}(x,y)$. Some examples are provided.
The notion of the transportation distance on the set of the Lévy measures on $\mathbb{R}$ is introduced. A Lévy-type process with a given symbol (state dependent analogue of the characteristic triplet) is proved to be well defined as a strong solution to a stochastic differential equation (SDE) under the assumption of Lipschitz continuity of the Lévy kernel in the symbol w.r.t. the state space variable in the transportation distance. As examples, we construct Gamma-type process and α-stable like process as strong solutions to SDEs.
The LAN property is proved in the statistical model based on discrete-time observations of a solution to a Lévy driven SDE. The proof is based on a general sufficient condition for a statistical model based on discrete observations of a Markov process to possess the LAN property, and involves substantially the Malliavin calculus-based integral representations for derivatives of log-likelihood of the model.