On the Feynman–Kac semigroup for some Markov processes
Volume 2, Issue 2 (2015), pp. 107–129
Pub. online: 18 June 2015
Type: Research Article
Open Access
Received
1 October 2014
1 October 2014
Revised
10 May 2015
10 May 2015
Accepted
26 May 2015
26 May 2015
Published
18 June 2015
18 June 2015
Abstract
For a (non-symmetric) strong Markov process X, consider the Feynman–Kac semigroup
where A is a continuous additive functional of X associated with some signed measure. Under the assumption that X admits a transition probability density that possesses upper and lower bounds of certain type, we show that the kernel corresponding to TAt possesses the density pAt(x,y) with respect to the Lebesgue measure and construct upper and lower bounds for pAt(x,y). Some examples are provided.
References
Albeverio, S., Ma, Z.-M.: Perturbation of Dirichlet forms—lower semiboundedness, closability, and form cores. J. Funct. Anal. 99, 332–356 (1991). MR1121617. doi:10.1016/0022-1236(91)90044-6
Albeverio, S., Ma, Z.-M.: Additive functionals, nowhere Radon and Kato class smooth measures associated with Dirichlet forms. Osaka J. Math. 29, 247–265 (1992). MR1173989
Blanchard, P., Ma, Z.-M.: Semigroup of Schrödinger operators with potentials given by Radon measures. In: Stochastic Processes, Physics and Geometry. L’Ecuyer, Pierre and Owen, Art B. World Sci. Publishing, Teaneck, NJ (1990). MR1124210
Bogdan, K., Jakubowski, T.: Estimates of heat kernel of fractional Laplacian perturbed by gradient operators. Commun. Math. Phys. 271(1), 179–198 (2007). MR2283957. doi:10.1007/s00220-006-0178-y
Bogdan, K., Szczypkowski, K.: Gaussian estimates for Schroedinger perturbations. Available at http://arxiv.org/pdf/1301.4627.pdf
Bogdan, K., Sztonyk, P.: Estimates of the potential kernel and Harnack’s inequality for the anisotropic fractional Laplacian. Stud. Math. 181(2), 101–123 (2007). MR2320691. doi:10.4064/sm181-2-1
Chaumont, L., Bravo, G.U.: Markovian bridges: Weak continuity and pathwise constructions. Ann. Probab. 39(2), 609–647 (2011). MR2789508. doi:10.1214/10-AOP562
Chen, Z.-Q., Song, R.: Conditional gauge theorem for non-local Feynman–Kac transforms. Probab. Theory Relat. Fields 125, 45–72 (2003). MR1952456. doi:10.1007/ s004400200219
Chen, Z.-Q., Kim, P., Song, R.: Stability of Dirichlet heat kernel estimates for non-local operators under Feynman–Kac perturbation. Trans. Am. Math. Soc. 367(7), 5237–5270 (2015). MR3335416. doi:10.1090/S0002-9947-2014-06190-4
Chung, K.L., Rao, M.: General gauge theorem for multiplicative functionals. Trans. Am. Math. Soc. 306, 819–836 (1988). MR0933320. doi:10.2307/2000825
Chung, K.L., Zhao, Z.: From Brownian Motion to Schrödinger’s Equation. Springer, Berlin (1995). MR1329992. doi:10.1007/978-3-642-57856-4
Dynkin, E.B.: Markov Processes, vols. 1–2. Springer, Berlin (1965). MR3111220. doi:10.1007/978-1-4614-6240-8_1
Fukushima, M.: Dirichlet Forms and Markov Processes. North-Holland Publishing Company, Amsterdam (1980). MR0569058
Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes. Walter de Gruyter & Co., Berlin (1994). MR1303354. doi:10.1515/9783110889741
Jacob, N.: Pseudo Differential Operators and Markov Processes, I: Fourier Analysis and Semigroups. Imperial College Press, London (2001). MR1873235. doi:10.1142/9781860949746
Knopova, V.: Compound kernel estimates for the transition probability density of a Lévy process in Rn. Theory Probab. Math. Stat. 89, 57–70 (2014). MR3235175. doi:10.1090/s0094-9000-2015-00935-2
Knopova, V., Kulik, A.: Intrinsic compound kernel estimates for the transition probability density of a Lévy type processes and their applications. Available at http://arxiv.org/abs/1308.0310
Knopova, V., Kulik, A.: Intrinsic small time estimates for distribution densities of Lévy processes. Random Oper. Stoch. Equ. 21(4), 321–344 (2013). MR3139314. doi:10.1515/rose-2013-0015
Song, R.: Two-sided estimates on the density of the Feynman–Kac semigroups of stable-like processes. Electron. J. Probab. 7, 146–161 (2006). MR2217813. doi:10.1214/ EJP.v11-308
Sznitman, A.-Z.: Brownian Motion, Obstacles and Random Media. Springer, Berlin (1998). MR1717054. doi:10.1007/978-3-662-11281-6
Van Casteren, J.A., Demuth, M.: Stochastic Spectral Theory for Selfadjoint Feller Operators: A Functional Integration Approach. Birkhäuser, Berlin (2000). MR1772266. doi:10.1007/978-3-0348-8460-0