We establish the large deviation principle for solutions of one-dimensional SDEs with discontinuous coefficients. The main statement is formulated in a form similar to the classical Wentzel–Freidlin theorem, but under the considerably weaker assumption that the coefficients have no discontinuities of the second kind.
We obtain weak rates for approximation of an integral functional of a Markov process by integral sums. An assumption on the process is formulated only in terms of its transition probability density, and, therefore, our approach is not strongly dependent on the structure of the process. Applications to the estimates of the rates of approximation of the Feynman–Kac semigroup and of the price of “occupation-time options” are provided.
where A is a continuous additive functional of X associated with some signed measure. Under the assumption that X admits a transition probability density that possesses upper and lower bounds of certain type, we show that the kernel corresponding to ${T_{t}^{A}}$ possesses the density ${p_{t}^{A}}(x,y)$ with respect to the Lebesgue measure and construct upper and lower bounds for ${p_{t}^{A}}(x,y)$. Some examples are provided.
In this article, we study homogeneous transient diffusion processes. We provide the basic distributions of their local times. It helps to get exact formulas and upper bounds for the moments, exponential moments, and potentials of integral functionals of transient diffusion processes. Some of the results generalize the corresponding results of Salminen and Yor for the Brownian motion with drift.