In this paper, we deal with an Ornstein–Uhlenbeck process driven by sub-fractional Brownian motion of the second kind with Hurst index $H\in (\frac{1}{2},1)$. We provide a least squares estimator (LSE) of the drift parameter based on continuous-time observations. The strong consistency and the upper bound $O(1/\sqrt{n})$ in Kolmogorov distance for central limit theorem of the LSE are obtained. We use a Malliavin–Stein approach for normal approximations.
This note provides a simple sufficient condition ensuring that solutions of stochastic delay differential equations (SDDEs) driven by subordinators are nonnegative. While, to the best of our knowledge, no simple nonnegativity conditions are available in the context of SDDEs, we compare our result to the literature within the subclass of invertible continuous-time ARMA (CARMA) processes. In particular, we analyze why our condition cannot be necessary for CARMA($p,q$) processes when $p=2$, and we show that there are various situations where our condition applies while existing results do not as soon as $p\ge 3$. Finally, we extend the result to a multidimensional setting.
A problem of drift parameter estimation is studied for a nonergodic weighted fractional Vasicek model defined as $d{X_{t}}=\theta (\mu +{X_{t}})dt+d{B_{t}^{a,b}}$, $t\ge 0$, with unknown parameters $\theta >0$, $\mu \in \mathbb{R}$ and $\alpha :=\theta \mu $, whereas ${B^{a,b}}:=\{{B_{t}^{a,b}},t\ge 0\}$ is a weighted fractional Brownian motion with parameters $a>-1$, $|b|<1$, $|b|<a+1$. Least square-type estimators $({\widetilde{\theta }_{T}},{\widetilde{\mu }_{T}})$ and $({\widetilde{\theta }_{T}},{\widetilde{\alpha }_{T}})$ are provided, respectively, for $(\theta ,\mu )$ and $(\theta ,\alpha )$ based on a continuous-time observation of $\{{X_{t}},\hspace{2.5pt}t\in [0,T]\}$ as $T\to \infty $. The strong consistency and the joint asymptotic distribution of $({\widetilde{\theta }_{T}},{\widetilde{\mu }_{T}})$ and $({\widetilde{\theta }_{T}},{\widetilde{\alpha }_{T}})$ are studied. Moreover, it is obtained that the limit distribution of ${\widetilde{\theta }_{T}}$ is a Cauchy-type distribution, and ${\widetilde{\mu }_{T}}$ and ${\widetilde{\alpha }_{T}}$ are asymptotically normal.
The chaos expansion of a random variable with uniform distribution is given. This decomposition is applied to analyze the behavior of each chaos component of the random variable $\log \zeta $ on the so-called critical line, where ζ is the Riemann zeta function. This analysis gives a better understanding of a famous theorem by Selberg.
In this paper, we study the stochastic three-dimensional modified Leray-alpha model arising from the turbulent flows of fluids. We prove the existence of the probabilistic weak solution under the non-Lipschitz condition for the nonlinear forcing terms. We also discuss its uniqueness.
The paper discusses several techniques which may be used for applying the coupling method to solutions of stochastic differential equations (SDEs). The coupling techniques traditionally consist of two components: one is local mixing, the other is recurrence. Often in the articles they do not split. Yet, they are quite different in their nature, and this paper separates them, concentrating only on the former.
Most of the techniques discussed here work in dimension $d\ge 1$, although, in $d=1$ there is one additional option to use intersections of trajectories, which requires nothing but the strong Markov property and nondegeneracy of the diffusion coefficient. In dimensions $d>1$ it is possible to use embedded Markov chains either by considering discrete times $n=0,1,\dots $, or by arranging special stopping time sequences and to use the local Markov–Dobrushin (MD) condition, which is one of the most efficient versions of local mixing. Further applications may be based on one or another version of the MD condition; respectively, this paper is devoted to various methods of verifying one or another form of it.
The existence and uniqueness of a global positive solution is proven for the system of stochastic differential equations describing a nonautonomous stochastic predator–prey model with a modified version of the Leslie–Gower term and Holling-type II functional response disturbed by white noise, centered and noncentered Poisson noises. Sufficient conditions are obtained for stochastic ultimate boundedness, stochastic permanence, nonpersistence in the mean, weak persistence in the mean and extinction of a solution to the considered system.
This paper investigates sample paths properties of φ-sub-Gaussian processes by means of entropy methods. Basing on a particular entropy integral, we treat the questions on continuity and the rate of growth of sample paths. The obtained results are then used to investigate the sample paths properties for a particular class of φ-sub-Gaussian processes related to the random heat equation. We derive the estimates for the distribution of suprema of such processes and evaluate their rate of growth.