Sharp asymptotics for q -norms of random vectors in high-dimensional -balls
Volume 8, Issue 2 (2021), pp. 239–274
Pub. online: 22 June 2021
Type: Research Article
Open Access
Received
29 January 2021
29 January 2021
Revised
5 May 2021
5 May 2021
Accepted
22 May 2021
22 May 2021
Published
22 June 2021
22 June 2021
Abstract
Sharp large deviation results of Bahadur–Ranga Rao type are provided for the q-norm of random vectors distributed on the ${\ell _{p}^{n}}$-ball ${\mathbb{B}_{p}^{n}}$ according to the cone probability measure or the uniform distribution for $1\le q<p<\infty $, thereby furthering previous large deviation results by Kabluchko, Prochno and Thäle in the same setting. These results are then applied to deduce sharp asymptotics for intersection volumes of different ${\ell _{p}^{n}}$-balls in the spirit of Schechtman and Schmuckenschläger, and for the length of the projection of an ${\ell _{p}^{n}}$-ball onto a line with uniform random direction. The sharp large deviation results are proven by providing convenient probabilistic representations of the q-norms, employing local limit theorems to approximate their densities, and then using geometric results for asymptotic expansions of Laplace integrals to integrate these densities and derive concrete probability estimates.
References
Adriani, C., Baldi, P.: Sharp estimates of deviations of the sample mean in many dimensions. Ann. Inst. Henri Poincaré Probab. Stat. 33(3), 371–385 (1997). MR1457057
Alonso-Gutiérrez, D., Prochno, J.: Thin-shell concentration for random vectors in Orlicz balls via moderate deviations and Gibbs measures. arXiv:2011.07523 (2020)
Alonso-Gutiérrez, D., Prochno, J., Thäle, C.: Large deviations for high-dimensional random projections of ${\ell _{p}^{n}}$-balls. Adv. Appl. Math. 99, 1–35 (2018). MR3806754. https://doi.org/10.1016/j.aam.2018.04.003
Alonso-Gutiérrez, D., Prochno, J., Thäle, C.: Gaussian fluctuations for high-dimensional random projections of ${\ell _{p}^{n}}$-balls. Bernoulli 25(4A), 3139–3174 (2019). MR4003577. https://doi.org/10.3150/18-BEJ1084
Anttila, M., Ball, K., Perissinaki, I.: The central limit problem for convex bodies. Trans. Am. Math. Soc. 355(12), 4723–4735 (2003). MR1997580. https://doi.org/10.1090/S0002-9947-03-03085-X
Artstein-Avidan, S., Giannopoulos, A., Milman, V.D.: Asymptotic Geometric Analysis. Part I. Mathematical Surveys and Monographs, vol. 202, p. 451. American Mathematical Society, Providence, RI (2015). MR3331351. https://doi.org/10.1090/surv/202
Bahadur, R.R., Ranga Rao, R.: On deviations of the sample mean. Ann. Math. Stat. 31(4), 1015–1027 (1960). MR0117775. https://doi.org/10.1214/aoms/1177705674
Barthe, F., Guédon, O., Mendelson, S., Naor, A.: A probabilistic approach to the geometry of the ${\ell _{p}^{n}}$-ball. Ann. Probab. 33(2), 480–513 (2005). MR2123199. https://doi.org/10.1214/009117904000000874
Bleistein, N., Handelsmann, R.A.: Asymptotic Expansions of Integrals. Dover Publications, Inc., New York (1975). MR0863284
Borovkov, A.A., Rogozin, B.A.: On the central limit theorem in the higher-dimensional case. Teor. Veroâtn. Primen. 10, 61–69 (1965). MR0173279
Brazitikos, S., Giannopoulos, A., Valettas, P., Vritsiou, B.-H.: Geometry of Isotropic Convex Bodies. Mathematical Surveys and Monographs, vol. 196, p. 594. American Mathematical Society, Providence, RI (2014). MR3185453. https://doi.org/10.1090/surv/196
Breitung, K., Hohenbichler, M.: Asymptotic approximations for multivariate integrals with an application to multinormal probabilities. J. Multivar. Anal. 30(1), 80–97 (1989). MR1003710. https://doi.org/10.1016/0047-259X(89)90089-4
Daniels, H.E.: Saddlepoint approximations in statistics. Ann. Math. Stat. 25(4), 631–650 (1954). MR0066602. https://doi.org/10.1214/aoms/1177728652
DasGupta, A.: Fundamentals of Probability: a First Course. Springer (2010). MR2583199. https://doi.org/10.1007/978-1-4419-5780-1
Debye, P.: Nährungsformeln für die Zylinderfunktionen für große Werte des Arguments und unbeschränkt veränderliche Werte des Index. Math. Ann. 67, 535–558 (1909). MR1511547. https://doi.org/10.1007/BF01450097
Dembo, A., Zeitouni, O.: Large Deviations. Techniques and Applications. Stochastic Modelling and Applied Probability, vol. 38, p. 396. Springer (2010). MR2571413. https://doi.org/10.1007/978-3-642-03311-7. Corrected reprint of the second (1998) edition.
den Hollander, F.: Large Deviations. Fields Institute Monographs, vol. 14, p. 143. American Mathematical Society, Providence, RI (2000). MR1739680
Esscher, F.: On the probability function in the collective theory of risk. Scand. Actuar. J. 1932(3), 175–195 (1932). https://doi.org/10.1080/03461238.1932.10405883
Gantert, N., Kim, S.S., Ramanan, K.: Large deviations for random projections of ${\ell ^{p}}$ balls. Ann. Probab. 45, 4419–4476 (2017). MR3737915. https://doi.org/10.1214/16-AOP1169
Goldman, R.: Curvature formulas for implicit curves and surfaces. Comput. Aided Geom. Des. 22(7), 632–658 (2005). Geometric Modelling and Differential Geometry. MR2169053. https://doi.org/10.1016/j.cagd.2005.06.005
Gromov, M., Milman, V.D.: Generalization of the spherical isoperimetric inequality to uniformly convex banach spaces. Compos. Math. 62(3), 263–282 (1987). MR0901393
Guédon, O.: Concentration phenomena in high dimensional geometry. In: Journées MAS 2012. ESAIM Proc., vol. 44, pp. 47–60. EDP Sci., Les Ulis (2014). MR3178607. https://doi.org/10.1051/proc/201444002
Guédon, O., Nayar, P., Tkocz, T.: Concentration inequalities and geometry of convex bodies. In: Analytical and Probabilistic Methods in the Geometry of Convex Bodies. IMPAN Lect. Notes, vol. 2, pp. 9–86. Polish Acad. Sci. Inst. Math., Warsaw (2014). MR3329056
Hicks, N.J.: Notes on Differential Geometry. Van Nostrand Mathematical Studies, vol. 3. D. Van Nostrand Company, Inc., Princeton, N.J.-Toronto-New York-London (1965). VI, 183 p. MR0179691
Jensen, J.L.: Saddlepoint Approximations. Oxford Science Publications. Clarendon Press (1995). MR1354837
Kabluchko, Z., Prochno, J.: The maximum entropy principle and volumetric properties of Orlicz balls. J. Math. Anal. Appl. 495(1), 124687 (2021). MR4172842. https://doi.org/10.1016/j.jmaa.2020.124687
Kabluchko, Z., Prochno, J., Thäle, C.: High-dimensional limit theorems for random vectors in ${\ell _{p}^{n}}$-balls. Commun. Contemp. Math. 21(1), 1750092, 30 p. (2019). MR3904638. https://doi.org/10.1142/S0219199717500924
Kabluchko, Z., Prochno, J., Thäle, C.: Sanov-type large deviations in Schatten classes. Ann. Inst. Henri Poincaré Probab. Stat. 56(2), 928–953 (2019). MR4076771. https://doi.org/10.1214/19-AIHP989
Kabluchko, Z., Prochno, J., Thäle, C.: High-dimensional limit theorems for random vectors in ${\ell _{p}^{n}}$-balls. II. Commun. Contemp. Math. (to appear) (2019). MR4216415. https://doi.org/10.1142/S0219199719500731
Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Probability and its Applications, p. 638. Springer (2002). MR1876169. https://doi.org/10.1007/978-1-4757-4015-8
Kim, S.S., Ramanan, K.: A conditional limit theorem for high-dimensional ${\ell ^{p}}$-spheres. J. Appl. Probab. 55, 1060–1077 (2018). MR3899928. https://doi.org/10.1017/jpr.2018.71
Klartag, B.: A central limit theorem for convex sets. Invent. Math. 168(1), 91–131 (2007). MR2285748. https://doi.org/10.1007/s00222-006-0028-8
Klartag, B.: Power-law estimates for the central limit theorem for convex sets. J. Funct. Anal. 245(1), 284–310 (2007). MR2311626. https://doi.org/10.1016/j.jfa.2006.12.005
Klingenberg, W., Hoffman, D.: A Course in Differential Geometry. Graduate Texts in Mathematics. Springer (2013). MR0474045
Liao, Y.-T., Ramanan, K.: Geometric sharp large deviations for random projections of ${\ell _{p}^{n}}$ spheres and balls. arXiv:2001.04053v2 (2020).
Naor, A.: The surface measure and cone measure on the sphere of ${\ell _{p}^{n}}$. Trans. Am. Math. Soc. 359(3), 1045–1079 (2007). MR2262841. https://doi.org/10.1090/S0002-9947-06-03939-0
Petrov, V.V.: On the probabilities of large deviations for sums of independent random variables. Teor. Veroâtn. Primen. 10, 310–322 (1965). MR0185645
Prochno, J., Thäle, C., Turchi, N.: Geometry of ℓpn-balls: Classical results and recent developments. In: High Dimensional Probability VIII. Progress in Probability. N. Gozlan, R. Latala, K. Loucini, M. Madiman eds. Birkhäuser (2019). MR4181365
Rachev, S.T., Rüschendorf, L.: Approximate independence of distributions on spheres and their stability properties. Ann. Probab. 19(3), 1311–1337 (1991). MR1112418
Richter, W.: Local limit theorems for large deviations. Dokl. Akad. Nauk SSSR 115, 53–56 (1957). MR0093816
Richter, W.: Mehrdimensionale lokale Grenzwertsätze für grosse Abweichungen. Teor. Veroâtn. Primen. 3, 107–114 (1958). MR0093814
Rockafellar, R.T.: Convex Analysis, vol. 36. Princeton University Press (1970). MR0274683
Schechtman, G., Schmuckenschläger, M.: Another remark on the volume of the intersection of two Lpn balls. In: Geometric Aspects of Functional Analysis (1989–90). Lecture Notes in Math., vol. 1469, pp. 174–178. Springer (1991). MR1122622
Schechtman, G., Zinn, J.: On the volume of the intersection of two ${L_{p}^{n}}$ balls. Proc. Am. Math. Soc. 110(1), 217–224 (1990). MR1015684. https://doi.org/10.2307/2048262
Schechtman, G., Zinn, J.: Concentration on the lpn ball. In: Geometric Aspects of Functional Analysis. Lecture Notes in Math., vol. 1745, pp. 245–256. Springer (2000). MR1796723. https://doi.org/10.1007/BFb0107218
Schmuckenschläger, M.: CLT and the volume of intersections of ${l_{p}^{n}}$-balls. Geom. Dedic. 85(1-3), 189–195 (2001). MR1845607. https://doi.org/10.1023/A:1010353121014
Vershynin, R.: High-Dimensional Probability: An Introduction with Applications in Data Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press (2018). MR3837109. https://doi.org/10.1017/9781108231596