Initiated around the year 2007, the Malliavin–Stein approach to probabilistic approximations combines Stein’s method with infinite-dimensional integration by parts formulae based on the use of Malliavin-type operators. In the last decade, Malliavin–Stein techniques have allowed researchers to establish new quantitative limit theorems in a variety of domains of theoretical and applied stochastic analysis. The aim of this survey is to illustrate some of the latest developments of the Malliavin–Stein method, with specific emphasis on extensions and generalizations in the framework of Markov semigroups and of random point measures.
This paper deals with linear stochastic partial differential equations with variable coefficients driven by Lévy white noise. First, an existence theorem for integral transforms of Lévy white noise is derived and the existence of generalized and mild solutions of second order elliptic partial differential equations is proved. Further, the generalized electric Schrödinger operator for different potential functions V is discussed.
Two optimal transport problems between determinantal point processes (DPP for short) are investigated. It is shown how to estimate the Kantorovitch–Rubinstein and Wasserstein-2 distances between distributions of DPP. These results are applied to evaluate the accuracy of a fast but approximate simulation algorithm of the Ginibre point process restricted to a circle. One can now simulate in a reasonable amount of time more than ten thousands points.
Sharp large deviation results of Bahadur–Ranga Rao type are provided for the q-norm of random vectors distributed on the ${\ell _{p}^{n}}$-ball ${\mathbb{B}_{p}^{n}}$ according to the cone probability measure or the uniform distribution for $1\le q<p<\infty $, thereby furthering previous large deviation results by Kabluchko, Prochno and Thäle in the same setting. These results are then applied to deduce sharp asymptotics for intersection volumes of different ${\ell _{p}^{n}}$-balls in the spirit of Schechtman and Schmuckenschläger, and for the length of the projection of an ${\ell _{p}^{n}}$-ball onto a line with uniform random direction. The sharp large deviation results are proven by providing convenient probabilistic representations of the q-norms, employing local limit theorems to approximate their densities, and then using geometric results for asymptotic expansions of Laplace integrals to integrate these densities and derive concrete probability estimates.
The chaos expansion of a random variable with uniform distribution is given. This decomposition is applied to analyze the behavior of each chaos component of the random variable $\log \zeta $ on the so-called critical line, where ζ is the Riemann zeta function. This analysis gives a better understanding of a famous theorem by Selberg.