Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 8, Issue 2 (2021)
  4. Second order elliptic partial differenti ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Second order elliptic partial differential equations driven by Lévy white noise
Volume 8, Issue 2 (2021), pp. 179–207
David Berger ORCID icon link to view author David Berger details   Farid Mohamed  

Authors

 
Placeholder
https://doi.org/10.15559/21-VMSTA181
Pub. online: 22 June 2021      Type: Research Article      Open accessOpen Access

Received
11 February 2021
Revised
21 May 2021
Accepted
21 May 2021
Published
22 June 2021

Abstract

This paper deals with linear stochastic partial differential equations with variable coefficients driven by Lévy white noise. First, an existence theorem for integral transforms of Lévy white noise is derived and the existence of generalized and mild solutions of second order elliptic partial differential equations is proved. Further, the generalized electric Schrödinger operator for different potential functions V is discussed.

References

[1] 
Barndorff-Nielsen, O.E., Basse-O’Connor, A.: Quasi Ornstein-Uhlenbeck processes. Bernoulli 17, 916–941 (2011). MR2817611. https://doi.org/10.3150/10-BEJ311
[2] 
Berger, D.: Lévy driven Carma generalized processes and stochastic partial differential equations. Stoch. Process. Appl. 130, 5865–5887 (2020). MR4140021. https://doi.org/10.1016/j.spa.2020.04.009
[3] 
Dalang, R.C., Humeau, T.: Random field solutions to linear SPDEs driven by symmetric pure jump Lévy space-time white noise. Electron. J. Probab. 24, 1–28 (2019). MR3978210. https://doi.org/10.1214/19-EJP317
[4] 
Davey, B., Hill, J., Mayboroda, S.: Fundamental matrices and Green matrices for non-homogeneous elliptic systems. Publ. Mat. 2, 537–614 (2018). MR3815288. https://doi.org/10.5565/PUBLMAT6221807
[5] 
Fageot, J., Humeau, T.: The domain of definition of the Lévy white noise. Stoch. Process. Appl. 135, 75–102 (2021). MR4222403. https://doi.org/10.1016/j.spa.2021.01.007
[6] 
Gelfand, I.M., Vilenkin, N.Y.: Generalized Functions, Vol. 4: Applications of Harmonic Analysis. Academic Press, New York and London (1964). MR0173945
[7] 
Grafakos, L.: Classical Fourier Analysis, Second Edition. Springer, New York (2008). MR2445437
[8] 
Hörmander, L.: The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis. Springer, Berlin Heidelberg (2003). MR1996773. https://doi.org/10.1007/978-3-642-61497-2
[9] 
Littman, W., Stampacchia, G., Weinberger, H.F.: Regular points for elliptic equations with discontinuous coefficients. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 17, 43–77 (1963). MR0161019
[10] 
Mayboroda, S., Poggi, B.: Exponential decay estimates for fundamental solutions of Schrödinger-type operators. Trans. Am. Math. Soc. 372, 4313–4357 (2019). MR4009431. https://doi.org/10.1090/tran/7817
[11] 
Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise: An Evolution Equation Approach. Cambridge University Press (2007). MR2356959. https://doi.org/10.1017/CBO9780511721373
[12] 
Rajput, B.S., Rosinski, J.: Spectral representations of infinitely divisible processes. Probab. Theory Relat. Fields 82, 451–487 (1989). MR1001524. https://doi.org/10.1007/BF00339998
[13] 
Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (2013). MR3185174
[14] 
Shen, Z.: On fundamental solutions of generalized Schrödinger operators. J. Funct. Anal. 167, 521–567 (1999). MR1716207. https://doi.org/10.1006/jfan.1999.3455
[15] 
Stein, E.: Harmonic Analysis. Princeton University Press (1993). MR1232192
[16] 
van Putten, M.: Maxwell’s equations in divergence form for general media with applications to MHD. Commun. Math. Phys. 141, 63–77 (1991). MR1133260
[17] 
Walsh, J.B.: An introduction to stochastic partial differential equations. École d’Été de Probabilités de Saint Flour 1984, 265–439 (1986). MR0876085. https://doi.org/10.1007/BFb0074920

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2021 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Stochastic partial differential equations Lévy white noise

MSC2010
60H15 60H40 35J15 35J10

Funding
The first author is financially supported through the DFG-NCN Beethoven Classic 3 project SCHI419/11-1.

Metrics
since March 2018
474

Article info
views

339

Full article
views

364

PDF
downloads

114

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy