Optimal transport between determinantal point processes and application to fast simulation
Volume 8, Issue 2 (2021), pp. 209–237
Pub. online: 2 June 2021
Type: Research Article
Open Access
1
Supported by grant ANR-17-CE40-0017 of the French National Research Agency (ANR project ASPAG). The authors are indebted to the anonymous referees for their very insightful remarks which helped them to improve this paper.
Received
1 November 2020
1 November 2020
Revised
1 April 2021
1 April 2021
Accepted
10 May 2021
10 May 2021
Published
2 June 2021
2 June 2021
Abstract
Two optimal transport problems between determinantal point processes (DPP for short) are investigated. It is shown how to estimate the Kantorovitch–Rubinstein and Wasserstein-2 distances between distributions of DPP. These results are applied to evaluate the accuracy of a fast but approximate simulation algorithm of the Ginibre point process restricted to a circle. One can now simulate in a reasonable amount of time more than ten thousands points.
References
Anari, N., Gharan, S.O., Rezaei, A.: Monte Carlo Markov chain algorithms for sampling strongly Rayleigh distributions and determinantal point processes. In: 29th Annual Conference on Learning Theory, vol. 49, pp. 103–115 (2016). http://proceedings.mlr.press/v49/anari16.html
Barbour, A.D., Brown, T.C.: The Stein-Chen method, point processes and compensators. Ann. Probab. 20(3), 1504–1527 (1992). MR1175275
Barbour, A.D., Maansson, M.: Compound Poisson process approximation. Ann. Probab. 30(3), 1492–1537 (2002). 00027. MR1920275. https://doi.org/10.1214/aop/1029867135
Bardenet, R., Hardy, A.: Monte Carlo with determinantal point processes. Ann. Appl. Probab. 30(1), 368–417 (2020). MR4068314. https://doi.org/10.1214/19-AAP1504
Camilier, I., Decreusefond, L.: Quasi-invariance and integration by parts for determinantal and permanental point processes. J. Funct. Anal. 259, 268–300 (2010). MR2610387. https://doi.org/10.1016/j.jfa.2010.01.007
Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Vol. I: Elementary theory and methods, 2nd edn. Probability and its Applications (New York), p. 469. Springer (2003). MR1950431
Decreusefond, L.: Wasserstein distance on configurations space. Potential Anal. 28(3), 283–300 (2008). MR2386101. https://doi.org/10.1007/s11118-008-9077-5
Decreusefond, L., Vasseur, A.: Stein’s method and Papangelou intensity for Poisson or Cox process approximation. Working paper or preprint (2018). https://hal.archives-ouvertes.fr/hal-01832212
Decreusefond, L., Flint, I., Vergne, A.: A note on the simulation of the Ginibre point process. J. Appl. Probab. 52(04), 1003–1012 (2015). 1310.0800v2. MR3439168. https://doi.org/10.1239/jap/1450802749
Decreusefond, L., Joulin, A., Savy, N.: Upper bounds on Rubinstein distances on configuration spaces and applications. Commun. Stoch. Anal. 4(3), 377–399 (2010). MR2677197. https://doi.org/10.31390/cosa.4.3.05
Dudley, R.M.: Real Analysis and Probability vol. 74. Cambridge University Press (2002). MR1932358. https://doi.org/10.1017/CBO9780511755347
Fenzl, M., Lambert, G.: Precise Deviations for Disk Counting Statistics of Invariant Determinantal Processes. Int. Math. Res. Not. (2021). https://doi.org/10.1093/imrn/rnaa341
Gillenwater, J.: Approximate inference for determinantal point processes. PhD thesis, University of Pennsylvania (2014). MR3321917
Goldman, A.: The Palm measure and the Voronoi tessellation for the Ginibre process. Ann. Appl. Probab. 20(1), 90–128 (2010). math/0610243. MR2582643. https://doi.org/10.1214/09-AAP620
Haimi, A., Hedenmalm, H.: The polyanalytic Ginibre ensembles. J. Stat. Phys. 153(1), 10–47 (2013). MR3100813. https://doi.org/10.1007/s10955-013-0813-x
Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Determinantal processes and independence. Probab. Surv. 3, 206–229 (2006). MR2216966. https://doi.org/10.1214/154957806000000078
Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes. University Lecture Series, vol. 51, p. 154. American Mathematical Society, Providence, RI (2009). MR2552864. https://doi.org/10.1090/ulect/051
Kallenberg, O.: Random Measures, 3rd edn. Academic Press (1983). MR0818219
Kulesza, A., Taskar, B.: Determinantal point processes for machine learning. Found. Trends Mach. Learn. 5(2–3), 123–286 (2012). https://doi.org/10.1561/2200000044
Lavancier, F., Møller, J., Rubak, E.: Determinantal point process models and statistical inference. J. R. Stat. Soc., Ser. B, Stat. Methodol. 77(4), 853–877 (2015). MR3382600. https://doi.org/10.1111/rssb.12096
Lindvall, T.: On Strassen’s Theorem on Stochastic Domination. Electron. Commun. Probab. 4, 51–59 (1999). MR1711599. https://doi.org/10.1214/ECP.v4-1005
Macchi, O.: The coincidence approach to stochastic point processes. Adv. Appl. Probab. 7, 83–122 (1975). MR0380979. https://doi.org/10.2307/1425855
McCann, R., Guillen, N.: Five Lectures on Optimal Transportation: Gemetry, Regularity and Applications. CRM Proceedings and Lecture Notes, vol. 56. American Mathematical Society, Providence, Rhode Island (2013). MR3060502. https://doi.org/10.1090/crmp/056/06
Moroz, G.: Determinantal Point Process. Zenodo (2020). https://doi.org/10.5281/zenodo.4088585
Olver, S., Nadakuditi, R.R., Trogdon, T.: Sampling unitary ensembles. Random Matrices: Theory Appl. 4(1), 1550002 (2015). MR3334666. https://doi.org/10.1142/S2010326315500021
Rezaei, A., Gharan, S.O.: A polynomial time MCMC method for sampling from continuous determinantal point processes. In: Proceedings of the 36th International Conference on Machine Learning, vol. 97, pp. 5438–5447 (2019). http://proceedings.mlr.press/v97/rezaei19a.html.
Röckner, M., Schied, A.: Rademacher’s theorem on configuration spaces and applications. J. Funct. Anal. 169(2), 325–356 (1999). MR1730565. https://doi.org/10.1006/jfan.1999.3474
Shirai, T., Takahashi, Y.: Random point fields associated with certain Fredholm determinants i: fermion, Poisson and boson point processes. J. Funct. Anal. 205(2), 414–463 (2003). MR2018415. https://doi.org/10.1016/S0022-1236(03)00171-X
Tremblay, N., Barthelme, P.-O., Amblard, S.: Optimized Algorithms to Sample Determinantal Point Processes. arXiv e-prints, 1802–08471 (2018). 1802.08471.
Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence, RI (2003). MR1964483. https://doi.org/10.1090/gsm/058
Villani, C.: Optimal Transport, Old and New. Lectures Notes in Mathematics. Springer Verlag, New York (2007). MR2459454. https://doi.org/10.1007/978-3-540-71050-9