Chaos expansion of uniformly distributed random variables and application to number theory
Volume 8, Issue 2 (2021), pp. 275–289
Pub. online: 26 March 2021
Type: Research Article
Open Access
Received
29 January 2021
29 January 2021
Revised
13 February 2021
13 February 2021
Accepted
20 February 2021
20 February 2021
Published
26 March 2021
26 March 2021
Abstract
The chaos expansion of a random variable with uniform distribution is given. This decomposition is applied to analyze the behavior of each chaos component of the random variable $\log \zeta $ on the so-called critical line, where ζ is the Riemann zeta function. This analysis gives a better understanding of a famous theorem by Selberg.
References
Bourgade, P.: Mesoscopic fluctuations of the zeta zeros. Probab. Theory Relat. Fields 148(3-4), 479–500 (2010). MR2678896. https://doi.org/10.1007/s00440-009-0237-3
Coram, M., Diaconis, P.: New tests of the correspondence between unitary eigenvalues and the zeros of Riemann’s zeta function. J. Phys. A, Math. Gen. 36, 2883–2906 (2003). Random matrix theory. MR1986397. https://doi.org/10.1088/0305-4470/36/12/302
Erdös, P.: On a new method in elementary number theory which leads to an elementary proof of the prime number theorem. Proc. Natl. Acad. Sci. USA 35, 374–384 (1949). MR29411. https://doi.org/10.1073/pnas.35.7.374
Hadamard, J.: Sur la distribution des zéros de la fonction $\zeta (s)$ et ses conséquences arithmétiques. Bull. Soc. Math. Fr. 24, 199–220 (1896). MR1504264
Hu, Y., Nualart, D.: Renormalized self-intersection local time for fractional Brownian motion. Ann. Probab. 33(3), 948–983 (2005). MR2135309. https://doi.org/10.1214/009117905000000017
Hughes, C.P., Nikeghbali, A., Yor, M.: An arithmetic model for the total disorder process. Probab. Theory Relat. Fields 141(1-2), 47–59 (2008). MR2372965. https://doi.org/10.1007/s00440-007-0079-9
Nourdin, I., Peccati, G., Rossi, M.: Nodal statistics of planar random waves. Commun. Math. Phys. 369(1), 99–151 (2019). MR3959555. https://doi.org/10.1007/s00220-019-03432-5
Nualart, D.: The Malliavin Calculus and Related Topics, 2nd edn. Probability and its Applications (New York), p. 382. Springer (2006). MR2200233
Nualart, D., Zheng, G.: Averaging Gaussian functionals. Electron. J. Probab. 25, 48–54 (2020). MR4092767. https://doi.org/10.1214/20-ejp453
Selberg, A.: On the normal density of primes in small intervals, and the difference between consecutive primes. Arch. Math. Naturvidensk. 47(6), 87–105 (1943). MR12624
Selberg, A.: On the remainder in the formula for $N(T)$, the number of zeros of $\zeta (s)$ in the strip $0<t<T$. Avh. Nor. Vidensk.-Akad. Oslo, I 1944(1), 27 (1944). MR15426
Selberg, A.: Contributions to the theory of the Riemann zeta-function. Arch. Math. Naturvidensk. 48(5), 89–155 (1946). MR20594
Titchmarsh, E.C.: The Theory of the Riemann Zeta-function, 2nd edn., p. 412. The Clarendon Press, Oxford University Press, New York (1986). Edited and with a preface by D.R. Heath-Brown. MR882550