Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 8, Issue 4 (2021)
  4. Principal components analysis for mixtur ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Principal components analysis for mixtures with varying concentrations
Volume 8, Issue 4 (2021), pp. 509–523
Olena Sugakova   Rostyslav Maiboroda ORCID icon link to view author Rostyslav Maiboroda details  

Authors

 
Placeholder
https://doi.org/10.15559/21-VMSTA191
Pub. online: 12 November 2021      Type: Research Article      Open accessOpen Access

Received
14 August 2021
Revised
30 October 2021
Accepted
30 October 2021
Published
12 November 2021

Abstract

Principal Component Analysis (PCA) is a classical technique of dimension reduction for multivariate data. When the data are a mixture of subjects from different subpopulations one can be interested in PCA of some (or each) subpopulation separately. In this paper estimators are considered for PC directions and corresponding eigenvectors of subpopulations in the nonparametric model of mixture with varying concentrations. Consistency and asymptotic normality of obtained estimators are proved. These results allow one to construct confidence sets for the PC model parameters. Performance of such confidence intervals for the leading eigenvalues is investigated via simulations.

References

[1] 
Autin, F., Pouet, C.: Adaptive test on components of densities mixture. Math. Methods Stat. 21(2), 93–108 (2012). MR2974011. https://doi.org/10.3103/S1066530712020020
[2] 
Doronin, O.: Adaptive estimation for a semiparametric model of mixture. Theory Probab. Math. Stat. 91, 29–41 (2015). MR3364121. https://doi.org/10.1090/tpms/964
[3] 
Gayraud, G., Ingster, Y.I.: Detection of sparse additive functions. Electron. J. Stat. 6, 1409–1448 (2012). MR2988453. https://doi.org/10.1214/12-EJS715
[4] 
Härdle, W., Simar, L.: Applied Multivariate Statistical Analysis. Springer, Berlin Heidelberg (2007). MR2367300
[5] 
Ho, N., Nguyen, X.: Convergence rates of parameter estimation for some weakly identifiable finite mixtures. Ann. Stat. 44, 2726–2755 (2016). MR3576559. https://doi.org/10.1214/16-AOS1444
[6] 
Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley (2001)
[7] 
Jolliffe, I.T.: Principal Component Analysis. Springer, New York (2010). MR0841268. https://doi.org/10.1007/978-1-4757-1904-8
[8] 
Magnus, J.R., Neudecker, H.: Matrix Differential Calculus with Applications in Statistics and Econometrics. Wiley, New York (2019). MR1698873
[9] 
Maiboroda, R., Sugakova, O.: Statistics of mixtures with varying concentrations with application to DNA microarray data analysis. J. Nonparametr. Stat. 24(1), 201–215 (2012). MR2885834. https://doi.org/10.1080/10485252.2011.630076
[10] 
Maiboroda, R., Sugakova, O., Doronin, A.: Generalized estimating equations for mixtures with varying concentrations. Can. J. Stat. 41(2), 217–236 (2013). MR3061876. https://doi.org/10.1002/cjs.11170
[11] 
Maiboroda, R., Sugakova, O.: Jackknife covariance matrix estimation for observations from mixture. Mod. Stoch. Theory Appl. 6(4), 495–513 (2019). MR4047396. https://doi.org/10.15559/19-vmsta145
[12] 
Miroshnichenko, V., Maiboroda, R.: Asymptotic normality of modified LS estimator for mixture of nonlinear regressions. Mod. Stoch. Theory Appl. 7(4), 435–448 (2020). MR4195645
[13] 
Pidnebesna, A., Fajnerová, I., Horáček, J., Hlinka, J.: Estimating Sparse Neuronal Signal from Hemodynamic Response: The Mixture Components Inference Approach. https://www.biorxiv.org/content/10.1101/2019.12.19.876508v1. Accessed 8 August 2021.
[14] 
Scrucca, L., Fop, M., Murphy, T.B., Raftery, A.E.: mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. R J. 8(1), 289–317 (2016). https://doi.org/10.32614/RJ-2016-021
[15] 
Van Huffel, S., Vandewalle, J.: The Total Least Squares Problem – Computational Aspects and Analysis. Society for Industrial and Applied Mathematics, Philadelphia (1991). MR1118607. https://doi.org/10.1137/1.9781611971002

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2021 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Finite mixture model principal components mixture with varying concentrations nonparametric estimation asymptotic normality confidence interval eigenvalue

MSC2010
62J05 62G20

Metrics
since March 2018
567

Article info
views

470

Full article
views

410

PDF
downloads

122

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy