Principal Component Analysis (PCA) is a classical technique of dimension reduction for multivariate data. When the data are a mixture of subjects from different subpopulations one can be interested in PCA of some (or each) subpopulation separately. In this paper estimators are considered for PC directions and corresponding eigenvectors of subpopulations in the nonparametric model of mixture with varying concentrations. Consistency and asymptotic normality of obtained estimators are proved. These results allow one to construct confidence sets for the PC model parameters. Performance of such confidence intervals for the leading eigenvalues is investigated via simulations.
We consider a mixture with varying concentrations in which each component is described by a nonlinear regression model. A modified least squares estimator is used to estimate the regressions parameters. Asymptotic normality of the derived estimators is demonstrated. This result is applied to confidence sets construction. Performance of the confidence sets is assessed by simulations.
A general jackknife estimator for the asymptotic covariance of moment estimators is considered in the case when the sample is taken from a mixture with varying concentrations of components. Consistency of the estimator is demonstrated. A fast algorithm for its calculation is described. The estimator is applied to construction of confidence sets for regression parameters in the linear regression with errors in variables. An application to sociological data analysis is considered.
Distance covariance is a quantity to measure the dependence of two random vectors. We show that the original concept introduced and developed by Székely, Rizzo and Bakirov can be embedded into a more general framework based on symmetric Lévy measures and the corresponding real-valued continuous negative definite functions. The Lévy measures replace the weight functions used in the original definition of distance covariance. All essential properties of distance covariance are preserved in this new framework.
From a practical point of view this allows less restrictive moment conditions on the underlying random variables and one can use other distance functions than Euclidean distance, e.g. Minkowski distance. Most importantly, it serves as the basic building block for distance multivariance, a quantity to measure and estimate dependence of multiple random vectors, which is introduced in a follow-up paper [Distance Multivariance: New dependence measures for random vectors (submitted). Revised version of arXiv: 1711.07775v1] to the present article.
Confidence ellipsoids for linear regression coefficients are constructed by observations from a mixture with varying concentrations. Two approaches are discussed. The first one is the nonparametric approach based on the weighted least squares technique. The second one is an approximate maximum likelihood estimation with application of the EM-algorithm for the estimates calculation.
We consider a finite mixture model with varying mixing probabilities. Linear regression models are assumed for observed variables with coefficients depending on the mixture component the observed subject belongs to. A modification of the least-squares estimator is proposed for estimation of the regression coefficients. Consistency and asymptotic normality of the estimates is demonstrated.
Given a sample from a discretely observed multidimensional compound Poisson process, we study the problem of nonparametric estimation of its jump size density $r_{0}$ and intensity $\lambda _{0}$. We take a nonparametric Bayesian approach to the problem and determine posterior contraction rates in this context, which, under some assumptions, we argue to be optimal posterior contraction rates. In particular, our results imply the existence of Bayesian point estimates that converge to the true parameter pair $(r_{0},\lambda _{0})$ at these rates. To the best of our knowledge, construction of nonparametric density estimators for inference in the class of discretely observed multidimensional Lévy processes, and the study of their rates of convergence is a new contribution to the literature.
A mixture with varying concentrations is a modification of a finite mixture model in which the mixing probabilities (concentrations of mixture components) may be different for different observations. In the paper, we assume that the concentrations are known and the distributions of components are completely unknown. Nonparametric technique is proposed for testing hypotheses on functional moments of components.