Linear regression by observations from mixture with varying concentrations
Volume 2, Issue 4 (2015), pp. 343–353
Pub. online: 4 December 2015
Type: Research Article
Open Access
Received
20 October 2015
20 October 2015
Revised
22 November 2015
22 November 2015
Accepted
26 November 2015
26 November 2015
Published
4 December 2015
4 December 2015
Abstract
We consider a finite mixture model with varying mixing probabilities. Linear regression models are assumed for observed variables with coefficients depending on the mixture component the observed subject belongs to. A modification of the least-squares estimator is proposed for estimation of the regression coefficients. Consistency and asymptotic normality of the estimates is demonstrated.
References
Autin, F., Pouet, Ch.: Test on the components of mixture densities. Stat. Risk. Model. 28(4), 389–410 (2011). MR2877572. doi:10.1524/strm.2011.1065
Billingsley, P.: Probability and Measure, 3rd edn. Wiley, New York (1995). MR1324786
Borovkov, A.A.: Mathematical Statistics. Gordon and Breach Science Publishers, Amsterdam (1998). MR1712750
Doronin, O.V.: Lower bound for a dispersion matrix for the semiparametric estimation in a model of mixtures. Theory Probab. Math. Stat. 90, 71–85 (2015). MR3241861. doi:10.1090/tpms/950
Maiboroda, R., Sugakova, O.: Statistics of mixtures with varying concentrations with application to DNA microarray data analysis. J. Nonparametr. Stat. 24(1), 201–205 (2012). MR2885834. doi:10.1080/10485252.2011.630076
Maiboroda, R.E., Sugakova, O.V., Doronin, A.V.: Generalized estimating equations for mixtures with varying concentrations. Can. J. Stat. 41(2), 217–236 (2013). MR3061876. doi:10.1002/cjs.11170
McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley–Interscience, New York (2000). MR1789474. doi:10.1002/0471721182
Seber, G.A.F., Lee, A.J.: Linear Regression Analysis. Wiley, New York (2003). MR1958247. doi:10.1002/9780471722199
Shcherbina, A.: Estimation of the mean value in the model of mixtures with varying concentrations. Theory Probab. Math. Stat. 84, 151–164 (2012). MR2857425. doi:10.1090/S0094-9000-2012-00866-1