Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 7, Issue 4 (2020)
  4. Asymptotic normality of modified LS esti ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Asymptotic normality of modified LS estimator for mixture of nonlinear regressions
Volume 7, Issue 4 (2020), pp. 435–448
Vitalii Miroshnichenko   Rostyslav Maiboroda  

Authors

 
Placeholder
https://doi.org/10.15559/20-VMSTA167
Pub. online: 8 December 2020      Type: Research Article      Open accessOpen Access

Received
21 August 2020
Revised
8 November 2020
Accepted
16 November 2020
Published
8 December 2020

Abstract

We consider a mixture with varying concentrations in which each component is described by a nonlinear regression model. A modified least squares estimator is used to estimate the regressions parameters. Asymptotic normality of the derived estimators is demonstrated. This result is applied to confidence sets construction. Performance of the confidence sets is assessed by simulations.

References

[1] 
Autin, F., Pouet, Ch.: Test on the components of mixture densities. Stat. Risk. Model. 28(4), 389–410 (2011). MR2877572. https://doi.org/10.1524/strm.2011.1065
[2] 
Benaglia, T., Chauveau, D., Hunter, D.R., Young, D.S.: mixtools: An R Package for Analyzing Finite Mixture Models. J. Stat. Softw. 32(6), 1–29 (2009)
[3] 
Borovkov, A.A.: Mathematical statistics. Gordon and Breach Science Publishers, Amsterdam (1998). MR1712750
[4] 
Faria, S., Soromenho, G.: Fitting mixtures of linear regressions. J. Stat. Comput. Simul. 80(2), 201–225 (2010). https://doi.org/10.1080/00949650802590261
[5] 
Grün, B., Friedrich, L.: Fitting finite mixtures of linear regression models with varying & fixed effects in R. In: Rizzi, A., Vichi, M. (eds.) Compstat 2006 – Proceedings in Computational Statistics, pp. 853–860. Physica Verlag, Heidelberg, Germany (2006). MR2173118
[6] 
Liubashenko, D., Maiboroda, R.: Linear regression by observations from mixture with varying concentrations. Mod. Stoch. Theory Appl. 2(4), 343–353 (2015). MR3456142. https://doi.org/10.15559/15-VMSTA41
[7] 
Maiboroda, R.: Statistical analysis of mixtures. Kyiv University Publishers, Kyiv (2003). (in Ukrainian)
[8] 
Maiboroda, R., Sugakova, O.: Jackknife covariance matrix estimation for observations from mixture. Mod. Stoch. Theory Appl. 6(4), 495–513 (2019). MR4047396. https://doi.org/10.15559/19-vmsta145
[9] 
Miroshnichenko, V.O.: Generalized least squares estimates for mixture of nonlinear regressions. Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics & Mathematics 219(5).
[10] 
Maiboroda, R., Kubaichuk, O.: Asymptotic normality of improved weighted empirical distribution functions. Theory Probab. Math. Stat. 69, 95–102 (2004). MR2110908. https://doi.org/10.1090/S0094-9000-05-00617-4
[11] 
Maiboroda, R.E., Sugakova, O.V.: Estimation and classification by observations from mixture. Kuiv University Publishers, Kyiv (2008). (in Ukrainian)
[12] 
Maiboroda, R., Sugakova, O.: Statistics of mixtures with varying concentrations with application to DNA microarray data analysis. J. Nonparametr. Stat. 24(1), 201–205 (2012). MR2885834. https://doi.org/10.1080/10485252.2011.630076
[13] 
Maiboroda, R.E., Sugakova, O.V., Doronin, A.V.: Generalized estimating equations for mixtures with varying concentrations. Can. J. Stat. 41(2), 217–236 (2013). MR3061876. https://doi.org/10.1002/cjs.11170
[14] 
Masiuk, S., Kukush, A., Shklyar, S., Chepurny, M., Likhtarov, I. (eds.): Radiation Risk Estimation: Based on Measurement Error Models, 2nd edn. de Gruyter series in Mathematics and Life (2017). MR3726857
[15] 
McLachlan, G., Krishnan, T.: The EM Algorithm and Extensions, 2nd edn. Wiley (2008). MR2392878. https://doi.org/10.1002/9780470191613
[16] 
Seber, G.A.F., Wild, C.J.: Nonlinear Regression. Wiley (2003). MR0986070. https://doi.org/10.1002/0471725315
[17] 
Shao, J.: Mathematical statistics. Springer, New York (1998). MR1670883
[18] 
Shao, J., Tu, D.: The Jackknife and Bootstrap. Springer, NY (1995). MR1351010. https://doi.org/10.1007/978-1-4612-0795-5
[19] 
Titterington, D.M., Smith, A.F., Makov, U.E.: Analysis of Finite Mixture Distributions. Wiley, New York (1985). MR0838090

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2020 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Finite mixture model nonlinear regression mixture with varying concentrations semiparametric estimation confidence ellipsoid

MSC2010
62J05 62G20

Metrics
since March 2018
426

Article info
views

518

Full article
views

424

PDF
downloads

134

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy