Nonparametric Bayesian inference for multidimensional compound Poisson processes
Volume 2, Issue 1 (2015), pp. 1–15
Pub. online: 13 March 2015
Type: Research Article
Open Access
Received
24 December 2014
24 December 2014
Revised
27 February 2015
27 February 2015
Accepted
1 March 2015
1 March 2015
Published
13 March 2015
13 March 2015
Abstract
Given a sample from a discretely observed multidimensional compound Poisson process, we study the problem of nonparametric estimation of its jump size density $r_{0}$ and intensity $\lambda _{0}$. We take a nonparametric Bayesian approach to the problem and determine posterior contraction rates in this context, which, under some assumptions, we argue to be optimal posterior contraction rates. In particular, our results imply the existence of Bayesian point estimates that converge to the true parameter pair $(r_{0},\lambda _{0})$ at these rates. To the best of our knowledge, construction of nonparametric density estimators for inference in the class of discretely observed multidimensional Lévy processes, and the study of their rates of convergence is a new contribution to the literature.
References
Bücher, A., Vetter, M.: Nonparametric inference on Lévy measures and copulas. Ann. Stat. 41(3), 1485–1515 (2013). MR3113819. doi:10.1214/13-AOS1116
Buchmann, B., Grübel, R.: Decompounding: An estimation problem for Poisson random sums. Ann. Stat. 31(4), 1054–1074 (2003). MR2001642. doi:10.1214/aos/1059655905
Buchmann, B., Grübel, R.: Decompounding Poisson random sums: recursively truncated estimates in the discrete case. Ann. Inst. Stat. Math. 56(4), 743–756 (2004). MR2126809. doi:10.1007/BF02506487
Comte, F., Genon-Catalot, V.: Non-parametric estimation for pure jump irregularly sampled or noisy Lévy processes. Stat. Neerl. 64(3), 290–313 (2010). MR2683462. doi:10.1111/j.1467-9574.2010.00462.x
Comte, F., Genon-Catalot, V.: Estimation for Lévy processes from high frequency data within a long time interval. Ann. Stat. 39(2), 803–837 (2011). MR2816339. doi:10.1214/10-AOS856
Comte, F., Duval, C., Genon-Catalot, V.: Nonparametric density estimation in compound Poisson processes using convolution power estimators. Metrika 77(1), 163–183 (2014). MR3152023. doi:10.1007/s00184-013-0475-3
Csiszár, I.: Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Magy. Tud. Akad. Mat. Kut. Intéz. Közl. 8, 85–108 (1963). MR0164374
Donnet, S., Rivoirard, V., Rousseau, J., Scricciolo, C.: Posterior concentration rates for counting processes with Aalen multiplicative intensities (2014). arXiv:1407.6033 [stat.ME]
Duval, C.: Density estimation for compound Poisson processes from discrete data. Stoch. Process. Appl. 123(11), 3963–3986 (2013). MR3091096. doi:10.1016/j.spa.2013.06.006
Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events: For Insurance and Finance. Appl. Math., vol. 33, p. 645. Springer, New York (1997). MR1458613. doi:10.1007/978-3-642-33483-2
Ferguson, T.S.: A Bayesian analysis of some nonparametric problems. Ann. Stat. 1, 209–230 (1973). MR0350949
Ferguson, T.S.: Bayesian density estimation by mixtures of normal distributions. In: Recent Advances in Statistics, pp. 287–302. Academic Press, New York (1983). MR0736538
Ghosal, S.: The Dirichlet process, related priors and posterior asymptotics. In: Bayesian Nonparametrics. Camb. Ser. Stat. Probab. Math., pp. 35–79. Cambridge Univ. Press, Cambridge (2010). MR2730660
Ghosal, S., van der Vaart, A.W.: Entropies and rates of convergence for maximum likelihood and Bayes estimation for mixtures of normal densities. Ann. Stat. 29(5), 1233–1263 (2001). MR1873329. doi:10.1214/aos/1013203453
Ghosal, S., Ghosh, J.K., van der Vaart, A.W.: Convergence rates of posterior distributions. Ann. Stat. 28(2), 500–531 (2000). MR1790007. doi:10.1214/aos/1016218228
Kutoyants, Y.A.: Statistical Inference for Spatial Poisson Processes. Lect. Notes Stat., vol. 134, p. 276. Springer (1998). MR1644620. doi:10.1007/978-1-4612-1706-0
Lo, A.Y.: On a class of Bayesian nonparametric estimates. I. Density estimates. Ann. Stat. 12(1), 351–357 (1984). MR0733519. doi:10.1214/aos/1176346412
Neumann, M.H., Reiß, M.: Nonparametric estimation for Lévy processes from low-frequency observations. Bernoulli 15(1), 223–248 (2009). MR2546805. doi:10.3150/08-BEJ148
Pollard, D.: A User’s Guide to Measure Theoretic Probability. Camb. Ser. Stat. Probab. Math., vol. 8, p. 351. Cambridge University Press, Cambridge (2002). MR1873379
Prabhu, N.U.: Stochastic Storage Processes: Queues, Insurance Risk, Dams, and Data Communication, 2nd edn. Appl. Math., vol. 15, p. 206. Springer, New York (1998). MR1492990. doi:10.1007/978-1-4612-1742-8
Shen, W., Tokdar, S.T., Ghosal, S.: Adaptive Bayesian multivariate density estimation with Dirichlet mixtures. Biometrika 100(3), 623–640 (2013). MR3094441. doi:10.1093/biomet/ast015
Skorohod, A.V.: Random Processes with Independent Increments, Nauka, Moscow (1964) (in Russian); English translation: Kluwer (1991). MR0182056
Van Es, B., Gugushvili, S., Spreij, P.: A kernel type nonparametric density estimator for decompounding. Bernoulli 13(3), 672–694 (2007). MR2348746. doi:10.3150/07-BEJ6091