Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 2, Issue 1 (2015)
  4. Nonparametric Bayesian inference for mul ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Cited by
  • More
    Article info Full article Cited by

Nonparametric Bayesian inference for multidimensional compound Poisson processes
Volume 2, Issue 1 (2015), pp. 1–15
Shota Gugushvili   Frank van der Meulen   Peter Spreij  

Authors

 
Placeholder
https://doi.org/10.15559/15-VMSTA20
Pub. online: 13 March 2015      Type: Research Article      Open accessOpen Access

Received
24 December 2014
Revised
27 February 2015
Accepted
1 March 2015
Published
13 March 2015

Abstract

Given a sample from a discretely observed multidimensional compound Poisson process, we study the problem of nonparametric estimation of its jump size density $r_{0}$ and intensity $\lambda _{0}$. We take a nonparametric Bayesian approach to the problem and determine posterior contraction rates in this context, which, under some assumptions, we argue to be optimal posterior contraction rates. In particular, our results imply the existence of Bayesian point estimates that converge to the true parameter pair $(r_{0},\lambda _{0})$ at these rates. To the best of our knowledge, construction of nonparametric density estimators for inference in the class of discretely observed multidimensional Lévy processes, and the study of their rates of convergence is a new contribution to the literature.

References

[1] 
Bücher, A., Vetter, M.: Nonparametric inference on Lévy measures and copulas. Ann. Stat. 41(3), 1485–1515 (2013). MR3113819. doi:10.1214/13-AOS1116
[2] 
Buchmann, B., Grübel, R.: Decompounding: An estimation problem for Poisson random sums. Ann. Stat. 31(4), 1054–1074 (2003). MR2001642. doi:10.1214/aos/1059655905
[3] 
Buchmann, B., Grübel, R.: Decompounding Poisson random sums: recursively truncated estimates in the discrete case. Ann. Inst. Stat. Math. 56(4), 743–756 (2004). MR2126809. doi:10.1007/BF02506487
[4] 
Comte, F., Genon-Catalot, V.: Non-parametric estimation for pure jump irregularly sampled or noisy Lévy processes. Stat. Neerl. 64(3), 290–313 (2010). MR2683462. doi:10.1111/j.1467-9574.2010.00462.x
[5] 
Comte, F., Genon-Catalot, V.: Estimation for Lévy processes from high frequency data within a long time interval. Ann. Stat. 39(2), 803–837 (2011). MR2816339. doi:10.1214/10-AOS856
[6] 
Comte, F., Duval, C., Genon-Catalot, V.: Nonparametric density estimation in compound Poisson processes using convolution power estimators. Metrika 77(1), 163–183 (2014). MR3152023. doi:10.1007/s00184-013-0475-3
[7] 
Csiszár, I.: Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Magy. Tud. Akad. Mat. Kut. Intéz. Közl. 8, 85–108 (1963). MR0164374
[8] 
Donnet, S., Rivoirard, V., Rousseau, J., Scricciolo, C.: Posterior concentration rates for counting processes with Aalen multiplicative intensities (2014). arXiv:1407.6033 [stat.ME]
[9] 
Duval, C.: Density estimation for compound Poisson processes from discrete data. Stoch. Process. Appl. 123(11), 3963–3986 (2013). MR3091096. doi:10.1016/j.spa.2013.06.006
[10] 
Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events: For Insurance and Finance. Appl. Math., vol. 33, p. 645. Springer, New York (1997). MR1458613. doi:10.1007/978-3-642-33483-2
[11] 
Ferguson, T.S.: A Bayesian analysis of some nonparametric problems. Ann. Stat. 1, 209–230 (1973). MR0350949
[12] 
Ferguson, T.S.: Bayesian density estimation by mixtures of normal distributions. In: Recent Advances in Statistics, pp. 287–302. Academic Press, New York (1983). MR0736538
[13] 
Ghosal, S.: The Dirichlet process, related priors and posterior asymptotics. In: Bayesian Nonparametrics. Camb. Ser. Stat. Probab. Math., pp. 35–79. Cambridge Univ. Press, Cambridge (2010). MR2730660
[14] 
Ghosal, S., van der Vaart, A.W.: Entropies and rates of convergence for maximum likelihood and Bayes estimation for mixtures of normal densities. Ann. Stat. 29(5), 1233–1263 (2001). MR1873329. doi:10.1214/aos/1013203453
[15] 
Ghosal, S., Ghosh, J.K., van der Vaart, A.W.: Convergence rates of posterior distributions. Ann. Stat. 28(2), 500–531 (2000). MR1790007. doi:10.1214/aos/1016218228
[16] 
Gugushvili, S.: Nonparametric inference for partially observed Lévy processes. PhD thesis, University of Amsterdam (2008)
[17] 
Kutoyants, Y.A.: Statistical Inference for Spatial Poisson Processes. Lect. Notes Stat., vol. 134, p. 276. Springer (1998). MR1644620. doi:10.1007/978-1-4612-1706-0
[18] 
Lo, A.Y.: On a class of Bayesian nonparametric estimates. I. Density estimates. Ann. Stat. 12(1), 351–357 (1984). MR0733519. doi:10.1214/aos/1176346412
[19] 
Neumann, M.H., Reiß, M.: Nonparametric estimation for Lévy processes from low-frequency observations. Bernoulli 15(1), 223–248 (2009). MR2546805. doi:10.3150/08-BEJ148
[20] 
Pollard, D.: A User’s Guide to Measure Theoretic Probability. Camb. Ser. Stat. Probab. Math., vol. 8, p. 351. Cambridge University Press, Cambridge (2002). MR1873379
[21] 
Prabhu, N.U.: Stochastic Storage Processes: Queues, Insurance Risk, Dams, and Data Communication, 2nd edn. Appl. Math., vol. 15, p. 206. Springer, New York (1998). MR1492990. doi:10.1007/978-1-4612-1742-8
[22] 
Shen, W., Tokdar, S.T., Ghosal, S.: Adaptive Bayesian multivariate density estimation with Dirichlet mixtures. Biometrika 100(3), 623–640 (2013). MR3094441. doi:10.1093/biomet/ast015
[23] 
Skorohod, A.V.: Random Processes with Independent Increments, Nauka, Moscow (1964) (in Russian); English translation: Kluwer (1991). MR0182056
[24] 
Van Es, B., Gugushvili, S., Spreij, P.: A kernel type nonparametric density estimator for decompounding. Bernoulli 13(3), 672–694 (2007). MR2348746. doi:10.3150/07-BEJ6091

Full article Cited by PDF XML
Full article Cited by PDF XML

Copyright
© 2015 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Decompounding multidimensional compound Poisson process nonparametric Bayesian estimation posterior contraction rate

MSC2010
62G20 62M30

Metrics
since March 2018
844

Article info
views

420

Full article
views

466

PDF
downloads

214

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy