Given a sample from a discretely observed multidimensional compound Poisson process, we study the problem of nonparametric estimation of its jump size density $r_{0}$ and intensity $\lambda _{0}$. We take a nonparametric Bayesian approach to the problem and determine posterior contraction rates in this context, which, under some assumptions, we argue to be optimal posterior contraction rates. In particular, our results imply the existence of Bayesian point estimates that converge to the true parameter pair $(r_{0},\lambda _{0})$ at these rates. To the best of our knowledge, construction of nonparametric density estimators for inference in the class of discretely observed multidimensional Lévy processes, and the study of their rates of convergence is a new contribution to the literature.
We study asymptotic normality of the randomized periodogram estimator of quadratic variation in the mixed Brownian–fractional Brownian model. In the semimartingale case, that is, where the Hurst parameter H of the fractional part satisfies $H\in (3/4,1)$, the central limit theorem holds. In the nonsemimartingale case, that is, where $H\in (1/2,3/4]$, the convergence toward the normal distribution with a nonzero mean still holds if $H=3/4$, whereas for the other values, that is, $H\in (1/2,3/4)$, the central convergence does not take place. We also provide Berry–Esseen estimates for the estimator.
This work is the first part of a project dealing with an in-depth study of effective techniques used in econometrics in order to make accurate forecasts in the concrete framework of one of the major economies of the most productive Italian area, namely the province of Verona. In particular, we develop an approach mainly based on vector autoregressions, where lagged values of two or more variables are considered, Granger causality, and the stochastic trend approach useful to work with the cointegration phenomenon. Latter techniques constitute the core of the present paper, whereas in the second part of the project, we present how these approaches can be applied to economic data at our disposal in order to obtain concrete analysis of import–export behavior for the considered productive area of Verona.
The present work constitutes the second part of a two-paper project that, in particular, deals with an in-depth study of effective techniques used in econometrics in order to make accurate forecasts in the concrete framework of one of the major economies of the most productive Italian area, namely the province of Verona. It is worth mentioning that this region is indubitably recognized as the core of the commercial engine of the whole Italian country. This is why our analysis has a concrete impact; it is based on real data, and this is also the reason why particular attention has been taken in treating the relevant economical data and in choosing the right methods to manage them to obtain good forecasts. In particular, we develop an approach mainly based on vector autoregression where lagged values of two or more variables are considered, Granger causality, and the stochastic trend approach useful to work with the cointegration phenomenon.