Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 2, Issue 1 (2015)
  4. Asymptotic normality of randomized perio ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Asymptotic normality of randomized periodogram for estimating quadratic variation in mixed Brownian–fractional Brownian model
Volume 2, Issue 1 (2015), pp. 29–49
Ehsan Azmoodeh   Tommi Sottinen   Lauri Viitasaari  

Authors

 
Placeholder
https://doi.org/10.15559/15-VMSTA24
Pub. online: 11 May 2015      Type: Research Article      Open accessOpen Access

Received
17 November 2014
Revised
30 March 2015
Accepted
24 April 2015
Published
11 May 2015

Abstract

We study asymptotic normality of the randomized periodogram estimator of quadratic variation in the mixed Brownian–fractional Brownian model. In the semimartingale case, that is, where the Hurst parameter H of the fractional part satisfies $H\in (3/4,1)$, the central limit theorem holds. In the nonsemimartingale case, that is, where $H\in (1/2,3/4]$, the convergence toward the normal distribution with a nonzero mean still holds if $H=3/4$, whereas for the other values, that is, $H\in (1/2,3/4)$, the central convergence does not take place. We also provide Berry–Esseen estimates for the estimator.

References

[1] 
Androshchuk, T., Mishura, Y.: Mixed Brownian–fractional Brownian model: Absence of arbitrage and related topics. Stochastics 78(5), 281–300 (2006). MR2270939 (2007k:60198). doi:10.1080/17442500600859317
[2] 
Azmoodeh, E., Valkeila, E.: Characterization of the quadratic variation of mixed Brownian–fractional Brownian motion. Stat. Inference Stoch. Process. 16(2), 97–112 (2013). MR3071882. doi:10.1007/s11203-013-9079-9
[3] 
Barndorff-Nielsen, E.O., Shephard, N.: Estimating quadratic variation using realized variance. J. Appl. Econ. 17, 457–477 (2002)
[4] 
Barndorff-Nielsen, O.E., Shephard, N.: Econometric analysis of realized volatility and its use in estimating stochastic volatility models. J. R. Stat. Soc., Ser. B, Stat. Methodol. 64(2), 253–280 (2002). MR1904704 (2003b:60105). doi:10.1111/1467-9868.00336
[5] 
Bender, C., Sottinen, T., Valkeila, E.: Arbitrage with fractional Brownian motion? Theory Stoch. Process. 13(1–2), 23–34 (2007). MR2343807 (2008d:91038)
[6] 
Bender, C., Sottinen, T., Valkeila, E.: Pricing by hedging and no-arbitrage beyond semimartingales. Finance Stoch. 12(4), 441–468 (2008). MR2447408 (2009j:91078). doi:10.1007/s00780-008-0074-8
[7] 
Bender, C., Sottinen, T., Valkeila, E.: Fractional processes as models in stochastic finance. In: Advanced Mathematical Methods for Finance, pp. 75–103. Springer, Berlin (2011). MR2792076. doi:10.1007/978-3-642-18412-3_3
[8] 
Black, F., Scholes, M.: The pricing of options and corporate liabilities [reprint of J. Polit. Econ. 81 (1973), no. 3, 637–654]. In: Financial Risk Measurement and Management. Internat. Lib. Crit. Writ. Econ., vol. 267, pp. 100–117. Edward Elgar, Cheltenham (2012). MR3235225
[9] 
Cheridito, P.: Mixed fractional Brownian motion. Bernoulli 7(6), 913–934 (2001). MR1873835. doi:10.2307/3318626
[10] 
Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300(3), 463–520 (1994). MR1304434 (95m:90022b). doi:10.1007/BF01450498
[11] 
Delbaen, F., Schachermayer, W.: The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Ann. 312(2), 215–250 (1998). MR1671792 (99k:60117). doi:10.1007/s002080050220
[12] 
Dzhaparidze, K., Spreij, P.: Spectral characterization of the optional quadratic variation process. Stoch. Process. Appl. 54(1), 165–174 (1994). MR1302700. doi:10.1016/0304-4149(94)00011-5
[13] 
Föllmer, H.: Calcul d’Itô sans probabilités. In: Séminaire de Probabilités, XV (Univ. Strasbourg, Strasbourg, 1979/1980) (French). Lecture Notes in Math., vol. 850, pp. 143–150. Springer, Berlin (1981). MR0622559 (82j:60098)
[14] 
Fukasawa, M.: Central limit theorem for the realized volatility based on tick time sampling. Finance Stoch. 14(2), 209–233 (2010). MR2607763 (2011e:62235). doi:10.1007/s00780-008-0087-3
[15] 
Hayashi, T., Jacod, J., Yoshida, N.: Irregular sampling and central limit theorems for power variations: The continuous case. Ann. Inst. Henri Poincaré, Probab. Stat. 47(4), 1197–1218 (2011). MR2884231. doi:10.1214/11-AIHP432
[16] 
Jacod, J.: Limit of random measures associated with the increments of a Brownian semimartingale. Preprint number 120, Laboratoire de Probabilités, Université Pierre et Marie Curie, Paris (1994)
[17] 
Nourdin, I., Peccati, G.: Normal Approximations Using Malliavin Calculus: From Stein’s Method to Universality. Cambridge University Press (2012). MR2962301. doi:10.1017/CBO9781139084659
[18] 
Nualart, D.: The Malliavin Calculus and Related Topics. Probability and Its Applications. Springer (2006). MR2200233
[19] 
Nualart, D., Ortiz-Latorre, S.: Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stoch. Process. Appl. 118(4), 614–628 (2008). MR2394845. doi:10.1016/j.spa.2007.05.004
[20] 
Nualart, D., Peccati, G.: Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33(1), 177–193 (2005). MR2118863. doi:10.1214/009117904000000621
[21] 
Pipiras, V., Taqqu, M.: Integration questions related to fractional Brownian motion. Probab. Theory Relat. Fields 118(2), 251–291 (2000). MR1790083. doi:10.1007/s440-000-8016-7
[22] 
Protter, P.: Stochastic Integration and Differential Equations. Springer, Berlin (2004). MR2020294
[23] 
Schoenmakers, J.G.M., Kloeden, P.E.: Robust option replication for a Black–Scholes model extended with nondeterministic trends. J. Appl. Math. Stoch. Anal. 12(2), 113–120 (1999). MR1701227 (2000g:91030). doi:10.1155/S104895339900012X
[24] 
Sondermann, D.: Introduction to Stochastic Calculus for Finance: A New Didactic Approach. Springer, Berlin (2006). MR2254170

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2015 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Central limit theorem multiple Wiener integrals Malliavin calculus fractional Brownian motion quadratic variation randomized periodogram

MSC2010
60G15 60H07 62F12

Metrics
since March 2018
598

Article info
views

657

Full article
views

330

PDF
downloads

169

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy