Given a low-frequency sample of the infinitely divisible moving average random field $\{{\textstyle\int _{{\mathbb{R}^{d}}}}f(t-x)\Lambda (dx),\hspace{2.5pt}t\in {\mathbb{R}^{d}}\}$, in [13] we proposed an estimator $\widehat{u{v_{0}}}$ for the function $\mathbb{R}\ni x\mapsto u(x){v_{0}}(x)=(u{v_{0}})(x)$, with $u(x)=x$ and ${v_{0}}$ being the Lévy density of the integrator random measure Λ. In this paper, we study asymptotic properties of the linear functional ${L^{2}}(\mathbb{R})\ni v\mapsto {\left\langle v,\widehat{u{v_{0}}}\right\rangle _{{L^{2}}(\mathbb{R})}}$, if the (known) kernel function f has a compact support. We provide conditions that ensure consistency (in mean) and prove a central limit theorem for it.
Moment inequalities for a class of functionals of i.i.d. random fields are proved. Then rates are derived in the central limit theorem for weighted sums of such randoms fields via an approximation by m-dependent random fields.
We study asymptotic normality of the randomized periodogram estimator of quadratic variation in the mixed Brownian–fractional Brownian model. In the semimartingale case, that is, where the Hurst parameter H of the fractional part satisfies $H\in (3/4,1)$, the central limit theorem holds. In the nonsemimartingale case, that is, where $H\in (1/2,3/4]$, the convergence toward the normal distribution with a nonzero mean still holds if $H=3/4$, whereas for the other values, that is, $H\in (1/2,3/4)$, the central convergence does not take place. We also provide Berry–Esseen estimates for the estimator.