On a linear functional for infinitely divisible moving average random fields
Volume 6, Issue 4 (2019), pp. 443–478
Pub. online: 22 October 2019
Type: Research Article
Open Access
Received
25 October 2018
25 October 2018
Revised
23 June 2019
23 June 2019
Accepted
13 September 2019
13 September 2019
Published
22 October 2019
22 October 2019
Abstract
Given a low-frequency sample of the infinitely divisible moving average random field $\{{\textstyle\int _{{\mathbb{R}^{d}}}}f(t-x)\Lambda (dx),\hspace{2.5pt}t\in {\mathbb{R}^{d}}\}$, in [13] we proposed an estimator $\widehat{u{v_{0}}}$ for the function $\mathbb{R}\ni x\mapsto u(x){v_{0}}(x)=(u{v_{0}})(x)$, with $u(x)=x$ and ${v_{0}}$ being the Lévy density of the integrator random measure Λ. In this paper, we study asymptotic properties of the linear functional ${L^{2}}(\mathbb{R})\ni v\mapsto {\left\langle v,\widehat{u{v_{0}}}\right\rangle _{{L^{2}}(\mathbb{R})}}$, if the (known) kernel function f has a compact support. We provide conditions that ensure consistency (in mean) and prove a central limit theorem for it.
References
Barndorff-Nielsen, O.E.: Stationary infinitely divisible processes. Braz. J. Probab. Stat. 25(3), 294–322 (2011). MR2832888. https://doi.org/10.1214/11-BJPS140.
Barndorff-Nielsen, O.E., Schmiegel, J.: Ambit processes; with applications to turbulence and tumour growth. Stochastic Analysis and Applications: The Abel Symposium 2005, 93–124 (2007). MR2397785. https://doi.org/10.1007/978-3-540-70847-6_5
Belomestny, D., Panov, V., Woerner, J.: Low frequency estimation of continuous–time moving average Lévy processes. to appear in: Bernoulli. arXiv: 1607.00896v1 (2017). MR3920361. https://doi.org/10.3150/17-bej1008
Belomestny, D., Comte, F., Genon-Catalot, V., Masuda, H., Reiß, M.: Lévy Matters IV. Springer (2010). MR3364253
Billingsley, P.: Probability and Measure. Wiley, New Jersey (2012). MR2893652
Bulinski, A., Shashkin, A.: Limit Theorems for Associated Random Fields and Related Systems. World Scientific Publishing, Singapore (2007). MR2375106. https://doi.org/10.1142/9789812709417
Chen, L.H.Y., Shao, Q.: Normal approximation under local dependence. Ann. Probab. 32(3A), 1985–2028 (2004). MR2073183. https://doi.org/10.1214/009117904000000450
Comte, F., Genon-Catalot, V.: Nonparametric estimation for pure jump Lévy processes based on high frequency data. Stoch. Process. Appl. 119(12), 4088–4123 (2009). MR2565560. https://doi.org/10.1016/j.spa.2009.09.013
Comte, F., Genon-Catalot, V.: Nonparametric adaptive estimation for pure jump Lévy processes. Ann. Inst. Henri Poincaré Probab. Stat. 46(3), 595–617 (2010). MR2682259. https://doi.org/10.1214/09-AIHP323
Dedecker, J.: Exponential inequalities and functional central limit theorems for random fields. ESAIM, Probab. Stat. 5(1), 77–104 (2001). MR1875665. https://doi.org/10.1051/ps:2001103
Deitmar, A., Echterhoff, S.: Principles of Harmonic Analysis. Springer (2009). MR2457798
Glück, J., Roth, S., Spodarev, E.: A solution of a linear integral equation with the application to statistics of infinitely divisible moving averages. Preprint. arXiv:1807.02003 (2018)
Gugushvili, S.: Nonparametric inference for discretely sampled Lévy processes. Ann. Inst. Henri Poincaré Probab. Stat. 48, 282–307 (2012). MR2919207. https://doi.org/10.1214/11-AIHP433
Heinrich, L.: Some bounds of cumulants of m-dependent random fields. Math. Nachr. 149(1), 303–317 (1990). MR1124812. https://doi.org/10.1002/mana.19901490123
Jónsdóttir, K.Y., Schmiegel, J., Jensen, E.B.V.: Lévy-based growth models. Bernoulli 14(1), 62–90 (2008). MR2401654. https://doi.org/10.3150/07-BEJ6130
Karcher, W., Roth, S., Spodarev, E., Walk, C.: An inverse problem for infinitely divisible moving average random fields. Stat. Inference Stoch. Process (2018). MR3959289. https://doi.org/10.1007/s11203-018-9188-6
Neumann, M.H., Reiß, M.: Nonparametric estimation for Lévy processes from low-frequency observations. Bernoulli 15(1), 223–248 (2009). MR2546805. https://doi.org/10.3150/08-BEJ148
Nickl, R., Reiß, M.: A Donsker theorem for Lévy measures. J. Funct. Anal. 263(10), 3306–3332 (2012). MR2973342. https://doi.org/10.1016/j.jfa.2012.08.012
Rajput, B.S., Rosinski, J.: Spectral representations of infinitely divisible processes. Probab. Theory Relat. Fields 82, 451–487 (1989). MR1001524. https://doi.org/10.1007/BF00339998
Sato, K.I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999). MR1739520
Trabs, M.: On infinitely divisible distributions with polynomially decaying characteristic functions. Stat. Probab. Lett. 94, 56–62 (2014). MR3257361. https://doi.org/10.1016/j.spl.2014.07.002