Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 6, Issue 4 (2019)
  4. On a linear functional for infinitely di ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

On a linear functional for infinitely divisible moving average random fields
Volume 6, Issue 4 (2019), pp. 443–478
Stefan Roth  

Authors

 
Placeholder
https://doi.org/10.15559/19-VMSTA143
Pub. online: 22 October 2019      Type: Research Article      Open accessOpen Access

Received
25 October 2018
Revised
23 June 2019
Accepted
13 September 2019
Published
22 October 2019

Abstract

Given a low-frequency sample of the infinitely divisible moving average random field $\{{\textstyle\int _{{\mathbb{R}^{d}}}}f(t-x)\Lambda (dx),\hspace{2.5pt}t\in {\mathbb{R}^{d}}\}$, in [13] we proposed an estimator $\widehat{u{v_{0}}}$ for the function $\mathbb{R}\ni x\mapsto u(x){v_{0}}(x)=(u{v_{0}})(x)$, with $u(x)=x$ and ${v_{0}}$ being the Lévy density of the integrator random measure Λ. In this paper, we study asymptotic properties of the linear functional ${L^{2}}(\mathbb{R})\ni v\mapsto {\left\langle v,\widehat{u{v_{0}}}\right\rangle _{{L^{2}}(\mathbb{R})}}$, if the (known) kernel function f has a compact support. We provide conditions that ensure consistency (in mean) and prove a central limit theorem for it.

References

[1] 
Barndorff-Nielsen, O.E.: Stationary infinitely divisible processes. Braz. J. Probab. Stat. 25(3), 294–322 (2011). MR2832888. https://doi.org/10.1214/11-BJPS140.
[2] 
Barndorff-Nielsen, O.E., Schmiegel, J.: Lévy-based tempo-spatial modelling; with applications to turbulence. Usp. Mat. Nauk 59(1), 63–90 (2004)
[3] 
Barndorff-Nielsen, O.E., Schmiegel, J.: Ambit processes; with applications to turbulence and tumour growth. Stochastic Analysis and Applications: The Abel Symposium 2005, 93–124 (2007). MR2397785. https://doi.org/10.1007/978-3-540-70847-6_5
[4] 
Belomestny, D., Panov, V., Woerner, J.: Low frequency estimation of continuous–time moving average Lévy processes. to appear in: Bernoulli. arXiv: 1607.00896v1 (2017). MR3920361. https://doi.org/10.3150/17-bej1008
[5] 
Belomestny, D., Comte, F., Genon-Catalot, V., Masuda, H., Reiß, M.: Lévy Matters IV. Springer (2010). MR3364253
[6] 
Billingsley, P.: Probability and Measure. Wiley, New Jersey (2012). MR2893652
[7] 
Bulinski, A., Shashkin, A.: Limit Theorems for Associated Random Fields and Related Systems. World Scientific Publishing, Singapore (2007). MR2375106. https://doi.org/10.1142/9789812709417
[8] 
Chen, L.H.Y., Shao, Q.: Normal approximation under local dependence. Ann. Probab. 32(3A), 1985–2028 (2004). MR2073183. https://doi.org/10.1214/009117904000000450
[9] 
Comte, F., Genon-Catalot, V.: Nonparametric estimation for pure jump Lévy processes based on high frequency data. Stoch. Process. Appl. 119(12), 4088–4123 (2009). MR2565560. https://doi.org/10.1016/j.spa.2009.09.013
[10] 
Comte, F., Genon-Catalot, V.: Nonparametric adaptive estimation for pure jump Lévy processes. Ann. Inst. Henri Poincaré Probab. Stat. 46(3), 595–617 (2010). MR2682259. https://doi.org/10.1214/09-AIHP323
[11] 
Dedecker, J.: Exponential inequalities and functional central limit theorems for random fields. ESAIM, Probab. Stat. 5(1), 77–104 (2001). MR1875665. https://doi.org/10.1051/ps:2001103
[12] 
Deitmar, A., Echterhoff, S.: Principles of Harmonic Analysis. Springer (2009). MR2457798
[13] 
Glück, J., Roth, S., Spodarev, E.: A solution of a linear integral equation with the application to statistics of infinitely divisible moving averages. Preprint. arXiv:1807.02003 (2018)
[14] 
Gugushvili, S.: Nonparametric inference for discretely sampled Lévy processes. Ann. Inst. Henri Poincaré Probab. Stat. 48, 282–307 (2012). MR2919207. https://doi.org/10.1214/11-AIHP433
[15] 
Heinrich, L.: Some bounds of cumulants of m-dependent random fields. Math. Nachr. 149(1), 303–317 (1990). MR1124812. https://doi.org/10.1002/mana.19901490123
[16] 
Jónsdóttir, K.Y., Schmiegel, J., Jensen, E.B.V.: Lévy-based growth models. Bernoulli 14(1), 62–90 (2008). MR2401654. https://doi.org/10.3150/07-BEJ6130
[17] 
Karcher, W.: On infinitely divisible random fields with an application in insurance. PhD thesis, Ulm University (2012)
[18] 
Karcher, W., Roth, S., Spodarev, E., Walk, C.: An inverse problem for infinitely divisible moving average random fields. Stat. Inference Stoch. Process (2018). MR3959289. https://doi.org/10.1007/s11203-018-9188-6
[19] 
Neumann, M.H., Reiß, M.: Nonparametric estimation for Lévy processes from low-frequency observations. Bernoulli 15(1), 223–248 (2009). MR2546805. https://doi.org/10.3150/08-BEJ148
[20] 
Nickl, R., Reiß, M.: A Donsker theorem for Lévy measures. J. Funct. Anal. 263(10), 3306–3332 (2012). MR2973342. https://doi.org/10.1016/j.jfa.2012.08.012
[21] 
Rajput, B.S., Rosinski, J.: Spectral representations of infinitely divisible processes. Probab. Theory Relat. Fields 82, 451–487 (1989). MR1001524. https://doi.org/10.1007/BF00339998
[22] 
Sato, K.I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999). MR1739520
[23] 
Trabs, M.: On infinitely divisible distributions with polynomially decaying characteristic functions. Stat. Probab. Lett. 94, 56–62 (2014). MR3257361. https://doi.org/10.1016/j.spl.2014.07.002

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2019 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Infinitely divisible random measure stationary random field Lévy process; moving average Lévy density Fourier transform central limit theorem

Metrics
since March 2018
575

Article info
views

635

Full article
views

388

PDF
downloads

159

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy