On a linear functional for infinitely divisible moving average random fields        
        
    
        Volume 6, Issue 4 (2019), pp. 443–478
            
    
                    Pub. online: 22 October 2019
                    
        Type: Research Article
            
                
            
Open Access
        
            
    
                Received
25 October 2018
                                    25 October 2018
                Revised
23 June 2019
                                    23 June 2019
                Accepted
13 September 2019
                                    13 September 2019
                Published
22 October 2019
                    22 October 2019
Abstract
Given a low-frequency sample of the infinitely divisible moving average random field $\{{\textstyle\int _{{\mathbb{R}^{d}}}}f(t-x)\Lambda (dx),\hspace{2.5pt}t\in {\mathbb{R}^{d}}\}$, in [13] we proposed an estimator $\widehat{u{v_{0}}}$ for the function $\mathbb{R}\ni x\mapsto u(x){v_{0}}(x)=(u{v_{0}})(x)$, with $u(x)=x$ and ${v_{0}}$ being the Lévy density of the integrator random measure Λ. In this paper, we study asymptotic properties of the linear functional ${L^{2}}(\mathbb{R})\ni v\mapsto {\left\langle v,\widehat{u{v_{0}}}\right\rangle _{{L^{2}}(\mathbb{R})}}$, if the (known) kernel function f has a compact support. We provide conditions that ensure consistency (in mean) and prove a central limit theorem for it.
            References
 Barndorff-Nielsen, O.E.: Stationary infinitely divisible processes. Braz. J. Probab. Stat. 25(3), 294–322 (2011). MR2832888. https://doi.org/10.1214/11-BJPS140.
 Barndorff-Nielsen, O.E., Schmiegel, J.: Ambit processes; with applications to turbulence and tumour growth. Stochastic Analysis and Applications: The Abel Symposium 2005, 93–124 (2007). MR2397785. https://doi.org/10.1007/978-3-540-70847-6_5
 Belomestny, D., Panov, V., Woerner, J.: Low frequency estimation of continuous–time moving average Lévy processes. to appear in: Bernoulli. arXiv: 1607.00896v1 (2017). MR3920361. https://doi.org/10.3150/17-bej1008
 Belomestny, D., Comte, F., Genon-Catalot, V., Masuda, H., Reiß, M.: Lévy Matters IV. Springer (2010). MR3364253
 Billingsley, P.: Probability and Measure. Wiley, New Jersey (2012). MR2893652
 Bulinski, A., Shashkin, A.: Limit Theorems for Associated Random Fields and Related Systems. World Scientific Publishing, Singapore (2007). MR2375106. https://doi.org/10.1142/9789812709417
 Chen, L.H.Y., Shao, Q.: Normal approximation under local dependence. Ann. Probab. 32(3A), 1985–2028 (2004). MR2073183. https://doi.org/10.1214/009117904000000450
 Comte, F., Genon-Catalot, V.: Nonparametric estimation for pure jump Lévy processes based on high frequency data. Stoch. Process. Appl. 119(12), 4088–4123 (2009). MR2565560. https://doi.org/10.1016/j.spa.2009.09.013
 Comte, F., Genon-Catalot, V.: Nonparametric adaptive estimation for pure jump Lévy processes. Ann. Inst. Henri Poincaré Probab. Stat. 46(3), 595–617 (2010). MR2682259. https://doi.org/10.1214/09-AIHP323
 Dedecker, J.: Exponential inequalities and functional central limit theorems for random fields. ESAIM, Probab. Stat. 5(1), 77–104 (2001). MR1875665. https://doi.org/10.1051/ps:2001103
 Deitmar, A., Echterhoff, S.: Principles of Harmonic Analysis. Springer (2009). MR2457798
 Glück, J., Roth, S., Spodarev, E.: A solution of a linear integral equation with the application to statistics of infinitely divisible moving averages. Preprint. arXiv:1807.02003 (2018)
 Gugushvili, S.: Nonparametric inference for discretely sampled Lévy processes. Ann. Inst. Henri Poincaré Probab. Stat. 48, 282–307 (2012). MR2919207. https://doi.org/10.1214/11-AIHP433
 Heinrich, L.: Some bounds of cumulants of m-dependent random fields. Math. Nachr. 149(1), 303–317 (1990). MR1124812. https://doi.org/10.1002/mana.19901490123
 Jónsdóttir, K.Y., Schmiegel, J., Jensen, E.B.V.: Lévy-based growth models. Bernoulli 14(1), 62–90 (2008). MR2401654. https://doi.org/10.3150/07-BEJ6130
 Karcher, W., Roth, S., Spodarev, E., Walk, C.: An inverse problem for infinitely divisible moving average random fields. Stat. Inference Stoch. Process (2018). MR3959289. https://doi.org/10.1007/s11203-018-9188-6
 Neumann, M.H., Reiß, M.: Nonparametric estimation for Lévy processes from low-frequency observations. Bernoulli 15(1), 223–248 (2009). MR2546805. https://doi.org/10.3150/08-BEJ148
 Nickl, R., Reiß, M.: A Donsker theorem for Lévy measures. J. Funct. Anal. 263(10), 3306–3332 (2012). MR2973342. https://doi.org/10.1016/j.jfa.2012.08.012
 Rajput, B.S., Rosinski, J.: Spectral representations of infinitely divisible processes. Probab. Theory Relat. Fields 82, 451–487 (1989). MR1001524. https://doi.org/10.1007/BF00339998
 Sato, K.I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999). MR1739520
 Trabs, M.: On infinitely divisible distributions with polynomially decaying characteristic functions. Stat. Probab. Lett. 94, 56–62 (2014). MR3257361. https://doi.org/10.1016/j.spl.2014.07.002