We define power variation estimators for the drift parameter of the stochastic heat equation with the fractional Laplacian and an additive Gaussian noise which is white in time and white or correlated in space. We prove that these estimators are consistent and asymptotically normal and we derive their rate of convergence under the Wasserstein metric.
Let $\{L(t),t\ge 0\}$ be a Lévy process with representative random variable $L(1)$ defined by the infinitely divisible logarithmic series distribution. We study here the transition probability and Lévy measure of this process. We also define two subordinated processes. The first one, $Y(t)$, is a Negative-Binomial process $X(t)$ directed by Gamma process. The second process, $Z(t)$, is a Logarithmic Lévy process $L(t)$ directed by Poisson process. For them, we prove that the Bernstein functions of the processes $L(t)$ and $Y(t)$ contain the iterated logarithmic function. In addition, the Lévy measure of the subordinated process $Z(t)$ is a shifted Lévy measure of the Negative-Binomial process $X(t)$. We compare the properties of these processes, knowing that the total masses of corresponding Lévy measures are equal.
Given a low-frequency sample of the infinitely divisible moving average random field $\{{\textstyle\int _{{\mathbb{R}^{d}}}}f(t-x)\Lambda (dx),\hspace{2.5pt}t\in {\mathbb{R}^{d}}\}$, in [13] we proposed an estimator $\widehat{u{v_{0}}}$ for the function $\mathbb{R}\ni x\mapsto u(x){v_{0}}(x)=(u{v_{0}})(x)$, with $u(x)=x$ and ${v_{0}}$ being the Lévy density of the integrator random measure Λ. In this paper, we study asymptotic properties of the linear functional ${L^{2}}(\mathbb{R})\ni v\mapsto {\left\langle v,\widehat{u{v_{0}}}\right\rangle _{{L^{2}}(\mathbb{R})}}$, if the (known) kernel function f has a compact support. We provide conditions that ensure consistency (in mean) and prove a central limit theorem for it.
In this paper we establish the existence and the uniqueness of the solution of a special class of BSDEs for Lévy processes in the case of a Lipschitz generator of sublinear growth. We then study a related problem of logarithmic utility maximization of the terminal wealth in the filtration generated by an arbitrary Lévy process.
A general jackknife estimator for the asymptotic covariance of moment estimators is considered in the case when the sample is taken from a mixture with varying concentrations of components. Consistency of the estimator is demonstrated. A fast algorithm for its calculation is described. The estimator is applied to construction of confidence sets for regression parameters in the linear regression with errors in variables. An application to sociological data analysis is considered.