Estimation of the drift parameter for the fractional stochastic heat equation via power variation
Volume 6, Issue 4 (2019), pp. 397–417
Pub. online: 3 October 2019
Type: Research Article
Open Access
Received
8 April 2019
8 April 2019
Revised
22 July 2019
22 July 2019
Accepted
11 September 2019
11 September 2019
Published
3 October 2019
3 October 2019
Abstract
We define power variation estimators for the drift parameter of the stochastic heat equation with the fractional Laplacian and an additive Gaussian noise which is white in time and white or correlated in space. We prove that these estimators are consistent and asymptotically normal and we derive their rate of convergence under the Wasserstein metric.
References
Bibinger, M., Trabs, M.: Volatility estimation for stochastic PDEs using high-frequency observations. Stoch. Process. Appl., in press, https://doi.org/10.1016/j.spa.2019.09.002
Cialenco, I.: Statistical inference for SPDEs: an overview. Stat. Inference Stoch. Process. 21(2), 309–329 (2018) MR3824970. https://doi.org/10.1007/s11203-018-9177-9
Debbi, L., Dozzi, M.: On the solutions of nonlinear stochastic fractional partial differential equations in one spatial dimension. Stoch. Process. Appl. 115, 1761–1781 (2005) MR2172885. https://doi.org/10.1016/j.spa.2005.06.001
Foondun, M., Khoshnevisan, D., Mahboubi, P.: Analysis of the gradient of the solution to a stochastic heat equation via fractional Brownian motion. Stoch. Partial Differ. Equ., Anal. Computat. 3(2), 133–158 (2015) MR3350450. https://doi.org/10.1007/s40072-015-0045-y
Herbin, H.: From n-parameter fractional Brownian motion to n-parameter multifractional Brownian motion. Rocky Mt. J. Math. 36(4), 1249–1284 (2006) MR2274895. https://doi.org/10.1216/rmjm/1181069415
Houdré, C., Villa, J.: An example of infinite dimensional quasi-helix. Stoch. Models, Contemp. Math. 366, 195–201 (2003) MR2037165. https://doi.org/10.1090/conm/336/06034
Jacob, A. N.and potrykus, Wu, J.-L.: Solving a non-linear stochastic pseudo-differential equation of Burgers type. Stoch. Process. Appl. 120, 2447–2467 (2010) MR2728173. https://doi.org/10.1016/j.spa.2010.08.007
Jacob, N., Leopold, G.: Pseudo differential operators with variable order of differentiation generating Feller semigroups. Integral Equ. Oper. Theory 17, 544–553 (1993) MR1243995. https://doi.org/10.1007/BF01200393
Jiang, Y., shi, K., Wang, Y.: Stochastic fractional Anderson models with fractional noises. Chin. Ann. Math. 31B(1), 101–118 (2010) MR2576182. https://doi.org/10.1007/s11401-008-0244-1
Khalil-Mahdi, Z., Tudor, C.: On the distribution and q-variation of the solution to the heat equation with fractional Laplacian. Probab. Theory Math. Stat. 39(2) (2019) https://doi.org/10.19195/0208-4147.39.2.5
Lei, P., Nualart, D.: A decomposition of the bifractional Brownian motion and some applications. Stat. Probab. Lett. 79(5), 619–624 (2008) MR2499385. https://doi.org/10.1016/j.spl.2008.10.009
Lindstrom, T.: Fractional Brownian fields as integrals of white noise. Bull. Lond. Math. Soc. 25, 893–898 (1993) MR1190370. https://doi.org/10.1112/blms/25.1.83
Lototsky, S.: Statistical inference for stochastic parabolic equations: a spectral approach. Publ. Math. 53(1), 3–45 (2009) MR2474113. https://doi.org/10.5565/PUBLMAT_53109_01
Markussen, B.: Likelihood inference for a discretely observed stochastic partial differential equation. Bernoulli 9(5), 745–762 (2003) MR2047684. https://doi.org/10.3150/bj/1066418876
Mohapl, J.: On estimation in the planar Ornstein–Ulenbeck process. Communications in statistics. Stoch. Models 13(3), 435–455 (1997) MR1457656. https://doi.org/10.1080/15326349708807435
Nourdin, I., Peccatti, G.: Normal Approximations with Malliavin Calculus From Stein’s Method to Universality. Cambridge University Press, Cambridge (2012) MR2962301. https://doi.org/10.1017/CBO9781139084659
Nourdin, I., Nualart, D., Tudor, C.: Central nd non-central limit theorems for weighted power variations of fractional Brownian motion. Ann. Inst. Henri Poincaré 46(4), 1055–1079 (2010) MR2744886. https://doi.org/10.1214/09-AIHP342
Pospisil, J., Tribe, R.: Parameter estimates and exact variations for stochastic heat equation heat equations driven by space-time white noise. Anal. Appl. 25(3), 593–611 (2007) MR2321899. https://doi.org/10.1080/07362990701282849
Russo, F., Tudor, C.A.: On bifractional Brownian motion. Stoch. Process. Appl. 5, 830–856 (2006) MR2218338. https://doi.org/10.1016/j.spa.2005.11.013
Tudor, C.: Analysis of Variations for Self-similar Processes. A Stochastic Calculus Approach. Probability and Its Applications. Springer, New York (2013) MR3112799. https://doi.org/10.1007/978-3-319-00936-0