Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 6, Issue 4 (2019)
  4. BSDEs and log-utility maximization for L ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

BSDEs and log-utility maximization for Lévy processes
Volume 6, Issue 4 (2019), pp. 479–494
Paolo Di Tella   Hans-Jürgen Engelbert  

Authors

 
Placeholder
https://doi.org/10.15559/19-VMSTA144
Pub. online: 28 October 2019      Type: Research Article      Open accessOpen Access

Received
15 February 2019
Revised
2 October 2019
Accepted
3 October 2019
Published
28 October 2019

Abstract

In this paper we establish the existence and the uniqueness of the solution of a special class of BSDEs for Lévy processes in the case of a Lipschitz generator of sublinear growth. We then study a related problem of logarithmic utility maximization of the terminal wealth in the filtration generated by an arbitrary Lévy process.

References

[1] 
Becherer, D.: Bounded solutions to backward sdes with jumps for utility optimization and indifference hedging. Ann. Appl. Probab. 16(4), 2027–2054 (2006). MR2288712. https://doi.org/10.1214/105051606000000475
[2] 
Cvitanić, J., Karatzas, I.: Convex duality in constrained portfolio optimization. Ann. Appl. Probab., 2(4), 767–818 (1992). MR1189418
[3] 
Cohen, S., Elliott, R.J.: Stochastic Calculus and Applications. Birkhäuser (2015). MR3443368. https://doi.org/10.1007/978-1-4939-2867-5
[4] 
Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300(1), 463–520 (1994). MR1304434. https://doi.org/10.1007/BF01450498
[5] 
Di Tella, P., Engelbert, H.-J.: The chaotic representation property of compensated-covariation stable families of martingales. Ann. Probab. 44(6), 3965–4005 (2016). MR3572329. https://doi.org/10.1214/15-AOP1066
[6] 
Di Tella, P., Engelbert, H.-J.: The predictable representation property of compensated-covariation stable families of martingales. Teor. Veroâtn. Primen. 60, 99–130 (2016). MR3568759. https://doi.org/10.1137/S0040585X97T98748X
[7] 
Goll, T., Kallsen, J.: Optimal portfolios for logarithmic utility. Stoch. Process. Appl., 89(1), 31–48 (2000), MR1775225. https://doi.org/10.1016/S0304-4149(00)00011-9
[8] 
Goll, T., Kallsen, J.: A complete explicit solution to the log-optimal portfolio problem. Ann. Appl. Probab. 13(2), 774–799 (2003). MR1970286. https://doi.org/10.1214/aoap/1050689603
[9] 
He, S., J., W., Yan, J.: Semimartingale Theory and Stochastic Calculus. Taylor & Francis (1992). MR1219534
[10] 
Hu, Y., P., I., Müller, M.: Utility maximization in incomplete markets. Ann. Appl. Probab. 15(3), 1691–1712 (2005). MR2152241. https://doi.org/10.1214/105051605000000188
[11] 
Izumisawa, M., Sekiguchi, T., Shiota, Y.: Remark on a characterization of BMO-martingales. Tohoku Math. J. (2) 31(3), 281–284 (1979). MR0547642. https://doi.org/10.2748/tmj/1178229795
[12] 
Jacod, J.: Calcul Stochastique et Problèmes de Martingales. Springer (1979). MR0542115
[13] 
Jacod, J., Shiryaev, A.: Limit Theorems for Stochastic Processes, Springer (2003). MR1943877. https://doi.org/10.1007/978-3-662-05265-5
[14] 
Kallsen, J.: Optimal portfolios for exponential Lévy processes. Math. Methods Oper. Res., 51(3), 357–374 (2000), MR1778648. https://doi.org/10.1007/s001860000048
[15] 
Morlais, M.-A.: Utility maximization in a jump market model. Stochastics 81(1), 1–27 (2009). MR2489997. https://doi.org/10.1080/17442500802201425
[16] 
Morlais, M.-A.: A new existence result for quadratic BSDEs with jumps with application to the utility maximization problem. Stoch. Process. Appl. 120(10), 1966–1995 (2010). MR2673984. https://doi.org/10.1016/j.spa.2010.05.011
[17] 
Nualart, D., Schoutens, W.: Chaotic and predictable representations for Lévy processes. Stoch. Process. Appl. 90(1), 109–122 (2000). MR1787127. https://doi.org/10.1016/S0304-4149(00)00035-1
[18] 
Nualart, D., Schoutens, W.: Backward stochastic differential equations and Feynman–Kac formula for Lévy processes, with applications in finance. Bernoulli 7(5), 761–776 (2001). MR1867081. https://doi.org/10.2307/3318541
[19] 
Rouge, R., El Karoui, N.: Pricing via utility maximization and entropy. Math. Finance 10(2), 259–276 (2000). MR1802922. https://doi.org/10.1111/1467-9965.00093
[20] 
Wang, J.-G.: Some remarks on processes with independent increments. Sémin. Probab. XV. Lect. Notes Math. 15(850), 627–631 (1981). MR0622593

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2019 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Lévy processes predictable representation property BSDEs utility maximization

MSC2010
60H05 50G46 60G51

Funding
PDT gratefully acknowledges Martin Keller-Ressel and funding from the German Research Foundation (DFG) under grant ZUK 64.

Metrics
since March 2018
764

Article info
views

381

Full article
views

407

PDF
downloads

172

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy