Jackknife covariance matrix estimation for observations from mixture
Volume 6, Issue 4 (2019), pp. 495–513
Pub. online: 7 November 2019
Type: Research Article
Open Access
Received
20 May 2019
20 May 2019
Revised
7 September 2019
7 September 2019
Accepted
14 October 2019
14 October 2019
Published
7 November 2019
7 November 2019
Abstract
A general jackknife estimator for the asymptotic covariance of moment estimators is considered in the case when the sample is taken from a mixture with varying concentrations of components. Consistency of the estimator is demonstrated. A fast algorithm for its calculation is described. The estimator is applied to construction of confidence sets for regression parameters in the linear regression with errors in variables. An application to sociological data analysis is considered.
References
Borovkov, A.A.: Mathematical Statistics. Gordon and Breach Science Publishers, Amsterdam (1998). MR1712750
Branham, R.: Total Least Squares in Astronomy. In: Total Least Squares and Errors-in-Variables Modeling, pp. 375–384. Springer, Dordrecht (2002). MR1952962. https://doi.org/10.1007/978-94-017-3552-0_33
Cheng, C.-L., Van Ness, J.: Statistical Regression with Measurement Error, Kendall’s Library of Statistics 6. Arnold, London (1999). MR1719513
Maiboroda, R., Sugakova, O.: Statistics of mixtures with varying concentrations with application to DNA microarray data analysis. J. Nonparametr. Stat. 24(1), 201–215 (2012). MR2885834. https://doi.org/10.1080/10485252.2011.630076
Miroshnichenko V, M.R.: Confidence ellipsoids for regression coefficients by observations from a mixture. Mod. Stoch. Theory Appl. 5(2), 225–245 (2018). MR3813093. https://doi.org/10.15559/18-vmsta105
Masiuk, S., Kukush, A., Shklyar, S., Chepurny, M., Likhtarov, I. (eds.): Radiation Risk Estimation: Based on Measurement Error Models, 2nd edn. de Gruyter series in Mathematics and Life Sciences, vol. 5. de Gruyter (2017). MR3726857
McLachlan, G.J., Lee, S.X., Rathnayake, S.I.: Finite Mixture Models. Ann. Rev. Stat. Appl. 6, 355–378 (2019). MR3939525. https://doi.org/10.1146/annurev-statistics-031017-100325
Shao, J.: Mathematical statistics. Springer, New York (2007). MR2002723. https://doi.org/10.1007/b97553
Shao, J., Tu, D.: The Jackknife and Bootstrap. Springer (2012). MR1351010. https://doi.org/10.1007/978-1-4612-0795-5
Seber, G., Lee, A.: Linear regression analysis. Wiley (2003). MR1958247. https://doi.org/10.1002/9780471722199
Therneau Terry, M., Grambsch Patricia, M.: Modeling Survival Data Extending the Cox Model. Springer (2000). MR1774977. https://doi.org/10.1007/978-1-4757-3294-8
Wolter, K.: Introduction To Variance Estimation. Springer (2007). MR2288542