is considered, containing as particular case the Barenblatt solutions arising, for instance, in the study of nonlinear heat equations. Alternative probabilistic representations of the Barenblatt-type solutions $u(x,t)$ are proposed. In the one-dimensional case, by means of this approach, $u(x,t)$ can be connected with the wave propagation.
Moment inequalities for a class of functionals of i.i.d. random fields are proved. Then rates are derived in the central limit theorem for weighted sums of such randoms fields via an approximation by m-dependent random fields.
We investigate the pricing of cliquet options in a geometric Meixner model. The considered option is of monthly sum cap style while the underlying stock price model is driven by a pure-jump Meixner–Lévy process yielding Meixner distributed log-returns. In this setting, we infer semi-analytic expressions for the cliquet option price by using the probability distribution function of the driving Meixner–Lévy process and by an application of Fourier transform techniques. In an introductory section, we compile various facts on the Meixner distribution and the related class of Meixner–Lévy processes. We also propose a customized measure change preserving the Meixner distribution of any Meixner process.
A tempered Hermite process modifies the power law kernel in the time domain representation of a Hermite process by multiplying an exponential tempering factor $\lambda >0$ such that the process is well defined for Hurst parameter $H>\frac{1}{2}$. A tempered Hermite process is the weak convergence limit of a certain discrete chaos process.
We study asymptotic normality of the randomized periodogram estimator of quadratic variation in the mixed Brownian–fractional Brownian model. In the semimartingale case, that is, where the Hurst parameter H of the fractional part satisfies $H\in (3/4,1)$, the central limit theorem holds. In the nonsemimartingale case, that is, where $H\in (1/2,3/4]$, the convergence toward the normal distribution with a nonzero mean still holds if $H=3/4$, whereas for the other values, that is, $H\in (1/2,3/4)$, the central convergence does not take place. We also provide Berry–Esseen estimates for the estimator.