Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 7, Issue 1 (2020)
  4. Alternative probabilistic representation ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Alternative probabilistic representations of Barenblatt-type solutions
Volume 7, Issue 1 (2020), pp. 97–112
Alessandro De Gregorio ORCID icon link to view author Alessandro De Gregorio details   Roberto Garra  

Authors

 
Placeholder
https://doi.org/10.15559/20-VMSTA151
Pub. online: 23 March 2020      Type: Research Article      Open accessOpen Access

Received
29 November 2019
Revised
4 March 2020
Accepted
13 March 2020
Published
23 March 2020

Abstract

A general class of probability density functions
\[ u(x,t)=C{t^{-\alpha d}}{\left(1-{\left(\frac{\| x\| }{c{t^{\alpha }}}\right)^{\beta }}\right)_{+}^{\gamma }},\hspace{1em}x\in {\mathbb{R}^{d}},t>0,\]
is considered, containing as particular case the Barenblatt solutions arising, for instance, in the study of nonlinear heat equations. Alternative probabilistic representations of the Barenblatt-type solutions $u(x,t)$ are proposed. In the one-dimensional case, by means of this approach, $u(x,t)$ can be connected with the wave propagation.

References

[1] 
Baeumer, B., Meerschaert, M.M., Nane, E.: Space-time duality for fractional diffusion. J. Appl. Probab. 46(4), 1100–1115 (2009). MR2582709. https://doi.org/10.1239/jap/1261670691
[2] 
Benachour, S., Chassaing, P., Roynette, B., Vallois, P.: Processus associés a l’équation des milieux poreux. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 4, 793–832 (1996). MR1469575
[3] 
Biler, P., Imbert, C., Karch, G.: Barenblatt profiles for a non local porous medium equation. C. R. Acad. Sci. Paris, Ser. I 349, 641–645 (2011). MR2817383. https://doi.org/10.1016/j.crma.2011.06.003
[4] 
Biler, P., Imbert, C., Karch, G.: The Nonlocal Porous Medium Equation: Barenblatt Profiles and Other Weak Solutions. Arch. Ration. Mech. Anal. 215, 497–529 (2015). MR3294409. https://doi.org/10.1007/s00205-014-0786-1
[5] 
Bresters, D.W.: On the equation of Euler-Poisson-Darboux. SIAM J. Math. Anal. 4(1), 31–41 (1973). MR0324235. https://doi.org/10.1137/0504005
[6] 
Chen, Z.Q., Meerschaert, M.M., Nane, E.: Space-time fractional diffusion on bounded domains. J. Math. Anal. Appl. 393(2), 479–488 (2012). MR2921690. https://doi.org/10.1016/j.jmaa.2012.04.032
[7] 
De Gregorio, A., Orsingher, E.: Flying randomly in ${\mathbb{R}^{d}}$ with Dirichlet displacements. Stoch. Process. Appl. 122, 676–713 (2012). MR2868936. https://doi.org/10.1016/j.spa.2011.10.009
[8] 
De Gregorio, A.: Stochastic models associated to a Nonlocal Porous Medium Equation. Mod. Stoch. Theory Appl. 5, 457–470 (2018). MR3914725. https://doi.org/10.15559/18-vmsta112
[9] 
De Gregorio, A., Orsingher, E.: Random flights connecting Porous Medium and Euler-Poisson-Darboux equations (2017). arXiv:1709.07663, 20 pp.
[10] 
Erdélyi, A.: On the Euler-Poisson-Darboux equation. J. Anal. Math. 23(1), 89–102 (1970). MR0285807. https://doi.org/10.1007/BF02795492
[11] 
Feng, S., Iscoe, I., Seppäläinen, T.: A microscopic mechanism for the porous medium equation. Stoch. Process. Appl. 66, 147–182 (1997). MR1440397. https://doi.org/10.1016/S0304-4149(96)00121-4
[12] 
Garra, R., Orsingher, E.: Random Flights Related to the Euler-Poisson-Darboux Equation. Markov Process. Relat. Fields 22, 87–110 (2016). MR3523980
[13] 
Getoor, R.K.: First passage times for symmetric stable processes in space. Trans. Am. Math. Soc. 101, 75–90 (1961). MR0137148. https://doi.org/10.2307/1993412
[14] 
Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products, 4th edn. Academic Press, New York (1980). MR0669666
[15] 
Heyde, C.C., Leonenko, N.N.: Student processes. Adv. Appl. Probab. 37, 342–365 (2005). MR2144557. https://doi.org/10.1239/aap/1118858629
[16] 
Inoue, M.: A Markov process associated with a porous medium equation. Proc. Jpn. Acad. 60, Ser. A, 157–160 (1989). MR0758056. https://doi.org/10.3792/pjaa.60.157
[17] 
Inoue, M.: Construction of diffusion processes associated with a porous medium equation. Hiroshima Math. J. 19, 281–297 (1989). MR1027932. https://doi.org/10.32917/hmj/1206129389
[18] 
Inoue, M.: Derivation of a porous medium equation from many Markovian particles and the propagation of chaos. Hiroshima Math. J. 21, 85–110 (1991). MR1091433. https://doi.org/10.32917/hmj/1206128924
[19] 
Jourdain, B.: Probabilistic approximation for a porous medium equation. Stoch. Process. Appl. 89, 81–99 (2000). MR1775228. https://doi.org/10.1016/S0304-4149(00)00014-4
[20] 
Kamin, S., Vazquez, J.L.: Fundamental solutions and asymptotic behaviour for the p-Laplacian equation. Rev. Mat. Iberoam. 4, 339–354 (1988). MR1028745. https://doi.org/10.4171/RMI/77
[21] 
Kellendong, J., Richard, S.: Weber-Schafheitlin-type integrals with exponent 1. Integral Transforms Spec. Funct. 20, 147–153 (2009). MR2492212. https://doi.org/10.1080/10652460802321485
[22] 
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. In: Vol., vol. 204. Elsevier Science Limited (2006). MR2218073
[23] 
Lee, K., Petrosyan, A., Vazquez, J.L.: Large-time geometric properties of solutions of the evolution p-Laplacian equation. J. Differ. Equ. 229, 389–411 (2006). MR2263560. https://doi.org/10.1016/j.jde.2005.07.028
[24] 
Meerschaert, M.M., Nane, E., Vellaisamy, P.: Fractional Cauchy problems on bounded domains. Ann. Probab. 37(3), 979–1007 (2009). MR2537547. https://doi.org/10.1214/08-AOP426
[25] 
Mendes, R.S., Lenzi, E.K., Malacarne, L.C., Picoli, S., Jauregui, M.: Random walks associated with nonlinear Fokker-Planck equations. Entropy 19 (2017), Paper No. 155, 11 pp. MR3653180. https://doi.org/10.3390/e19040155
[26] 
Nica, A., Speicher, R.: Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series, vol. 335. Cambridge Univ. Press, Cambridge (2006). MR2266879. https://doi.org/10.1017/CBO9780511735127
[27] 
Orsingher, E., Beghin, L.: Fractional diffusion equations and processes with randomly varying time. Ann. Probab. 37(1), 206–249 (2009). MR2489164. https://doi.org/10.1214/08-AOP401
[28] 
Pagnini, G.: Erdélyi-Kober fractional diffusion. Fract. Calc. Appl. Anal. 15, 117–127 (2012). MR2872114. https://doi.org/10.2478/s13540-012-0008-1
[29] 
Philipowski, R.: Interacting diffusions approximating the porous medium equation and propagation of chaos. Stoch. Process. Appl. 117, 526–538 (2007). MR2305385. https://doi.org/10.1016/j.spa.2006.09.003
[30] 
Plociniczak, L., Świtala, M.: Compactly supported solution of the time-fractional porous medium equation on the half-line (2018). arXiv:1803.03016. MR3924620. https://doi.org/10.1137/18M1192561
[31] 
Rosencrans, S.I.: Diffusion Transforms. J. Differ. Equ. 13, 457–467 (1973). MR0331533. https://doi.org/10.1016/0022-0396(73)90004-1
[32] 
Tarasov, V.E., Tarasova, S.: Probabilistic Interpretation of Kober Fractional Integral of Non-Integer Order. Prog. Fract. Differ. Appl. 5(1), 1–5 (2019). https://doi.org/10.18576/pfda/050101
[33] 
Vazquez, J.L.: The Porous Medium Equation. Mathematical Theory. Oxford Math. Monogr. Oxford Univ. Press, Oxford (2007). MR2286292
[34] 
Voiculescu, D.: Limit laws for random matrices and free products. Invent. Math. 104, 201–220 (1991). MR1094052. https://doi.org/10.1007/BF01245072
[35] 
Voiculescu, D.V., Dykema, K.J., Nica, A.: Free Random Variables: A Noncommutative Probability Approach to Free Products with Applications to Random Matrices, Operator Algebras and Harmonic Analysis on Free Groups. CRM Monograph Series, vol. 1. Amer. Math. Soc., Providence, RI (1992). MR1217253

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2020 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Anomalous diffusion Beta random variable Euler–Poisson–Darboux equation Fourier transform nonlinear diffusion equation random velocity

MSC2010
60G07

Metrics
since March 2018
600

Article info
views

707

Full article
views

397

PDF
downloads

128

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy