The need to model a Markov renewal on-off process with multiple off-states arise in many applications such as economics, physics, and engineering. Characterization of the occupation time of one specific off-state marginally or two off-states jointly is crucial to understand such processes. The exact marginal and joint distributions of the off-state occupation times are derived. The theoretical results are confirmed numerically in a simulation study. A special case when all holding times have Lévy distribution is considered for the possibility of simplification of the formulas.
In the article [Theory of Probability & Its Applications 62(2) (2018), 216–235], a class $\mathbb{W}$ of terminal joint distributions of integrable increasing processes and their compensators was introduced. In this paper, it is shown that the discrete distributions lying in $\mathbb{W}$ form a dense subset in the set $\mathbb{W}$ for ψ-weak topology with a gauge function ψ of linear growth.
A single jump filtration ${({\mathcal{F}_{t}})_{t\in {\mathbb{R}_{+}}}}$ generated by a random variable γ with values in ${\overline{\mathbb{R}}_{+}}$ on a probability space $(\Omega ,\mathcal{F},\mathsf{P})$ is defined as follows: a set $A\in \mathcal{F}$ belongs to ${\mathcal{F}_{t}}$ if $A\cap \{\gamma >t\}$ is either ∅ or $\{\gamma >t\}$. A process M is proved to be a local martingale with respect to this filtration if and only if it has a representation ${M_{t}}=F(t){\mathbb{1}_{\{t<\gamma \}}}+L{\mathbb{1}_{\{t\geqslant \gamma \}}}$, where F is a deterministic function and L is a random variable such that $\mathsf{E}|{M_{t}}|<\infty $ and $\mathsf{E}({M_{t}})=\mathsf{E}({M_{0}})$ for every $t\in \{t\in {\mathbb{R}_{+}}:\mathsf{P}(\gamma \geqslant t)>0\}$. This result seems to be new even in a special case that has been studied in the literature, namely, where $\mathcal{F}$ is the smallest σ-field with respect to which γ is measurable (and then the filtration is the smallest one with respect to which γ is a stopping time). As a consequence, a full description of all local martingales is given and they are classified according to their global behaviour.
is considered, containing as particular case the Barenblatt solutions arising, for instance, in the study of nonlinear heat equations. Alternative probabilistic representations of the Barenblatt-type solutions $u(x,t)$ are proposed. In the one-dimensional case, by means of this approach, $u(x,t)$ can be connected with the wave propagation.
The problem of (pathwise) large deviations for conditionally continuous Gaussian processes is investigated. The theory of large deviations for Gaussian processes is extended to the wider class of random processes – the conditionally Gaussian processes. The estimates of level crossing probability for such processes are given as an application.
This paper is devoted to investigation of supremum of averaged deviations $|X(t)-f(t)-\int _{\mathbb{T}}(X(u)-f(u))\hspace{0.1667em}\mathrm{d}\mu (u)/\mu (\mathbb{T})|$ of a stochastic process from Orlicz space of random variables using the method of majorizing measures. An estimate of distribution of supremum of deviations $|X(t)-f(t)|$ is derived. A special case of the $L_{q}$ space is considered. As an example, the obtained results are applied to stochastic processes from the $L_{2}$ space with known covariance functions.
In this paper, we consider the Cox–Ingersoll–Ross (CIR) process in the regime where the process does not hit zero. We construct additive and multiplicative discrete approximation schemes for the price of asset that is modeled by the CIR process and geometric CIR process. In order to construct these schemes, we take the Euler approximations of the CIR process itself but replace the increments of the Wiener process with iid bounded vanishing symmetric random variables. We introduce a “truncated” CIR process and apply it to prove the weak convergence of asset prices. We establish the fact that this “truncated” process does not hit zero under the same condition considered for the original nontruncated process.