Single jump filtrations and local martingales
Volume 7, Issue 2 (2020), pp. 135–156
Pub. online: 25 May 2020
Type: Research Article
Open Access
Received
24 September 2019
24 September 2019
Revised
30 April 2020
30 April 2020
Accepted
1 May 2020
1 May 2020
Published
25 May 2020
25 May 2020
Abstract
A single jump filtration ${({\mathcal{F}_{t}})_{t\in {\mathbb{R}_{+}}}}$ generated by a random variable γ with values in ${\overline{\mathbb{R}}_{+}}$ on a probability space $(\Omega ,\mathcal{F},\mathsf{P})$ is defined as follows: a set $A\in \mathcal{F}$ belongs to ${\mathcal{F}_{t}}$ if $A\cap \{\gamma >t\}$ is either ∅ or $\{\gamma >t\}$. A process M is proved to be a local martingale with respect to this filtration if and only if it has a representation ${M_{t}}=F(t){\mathbb{1}_{\{t<\gamma \}}}+L{\mathbb{1}_{\{t\geqslant \gamma \}}}$, where F is a deterministic function and L is a random variable such that $\mathsf{E}|{M_{t}}|<\infty $ and $\mathsf{E}({M_{t}})=\mathsf{E}({M_{0}})$ for every $t\in \{t\in {\mathbb{R}_{+}}:\mathsf{P}(\gamma \geqslant t)>0\}$. This result seems to be new even in a special case that has been studied in the literature, namely, where $\mathcal{F}$ is the smallest σ-field with respect to which γ is measurable (and then the filtration is the smallest one with respect to which γ is a stopping time). As a consequence, a full description of all local martingales is given and they are classified according to their global behaviour.
References
Boel, R., Varaiya, P., Wong, E.: Martingales on jump processes. I. Representation results. SIAM J. Control 13(5), 999–1021 (1975). MR0400379. https://doi.org/10.1137/0313063
Chou, C.-S., Meyer, P.-A.: Sur la représentation des martingales comme intégrales stochastiques dans les processus ponctuels. In: Séminaire de Probabilités, IX. Lecture Notes in Math., vol. 465, pp. 226–236. Springer (1975). MR0436310. https://doi.org/10.1007/BFb0102993
Davis, M.H.A.: The representation of martingales of jump processes. SIAM J. Control Optim. 14(4), 623–638 (1976). MR0418221. https://doi.org/10.1137/0314041
Dellacherie, C.: Un exemple de la théorie générale des processus. In: Séminaire de Probabilités, IV. Lecture Notes in Math., vol. 124, pp. 60–70. Springer (1970). MR0263157. https://doi.org/10.1007/BFb0059333
Dellacherie, C., Meyer, P.-A.: Probabilities and Potential. North-Holland Mathematics Studies, vol. 29, p. 189. North-Holland Publishing Co., Amsterdam-New York (1978). MR521810
Dellacherie, C., Meyer, P.-A.: Probabilities and Potential. B. North-Holland Mathematics Studies, vol. 72, p. 463. North-Holland Publishing Co., Amsterdam (1982). MR745449
Dubins, L.E., Gilat, D.: On the distribution of maxima of martingales. Proc. Am. Math. Soc. 68(3), 337–338 (1978). MR0494473. https://doi.org/10.1090/S0002-9939-1978-0494473-4
Elliott, R.J.: Stochastic integrals for martingales of a jump process with partially accessible jump times. Z. Wahrscheinlichkeitstheor. Verw. Geb. 36(3), 213–226 (1976). MR0420846. https://doi.org/10.1007/BF00532546
Gushchin, A.A.: Stochastic Calculus for Quantitative Finance, p. 185. ISTE Press, London; Elsevier Ltd, Oxford (2015). MR3410512
Gushchin, A.A.: The joint law of terminal values of a nonnegative submartingale and its compensator. Theory Probab. Appl. 62(2), 216–235 (2018). MR3649035. https://doi.org/10.1137/S0040585X97T988575
He, S.W.: Some remarks on single jump processes. In: Seminar on Probability, XVII. Lecture Notes in Math., vol. 986, pp. 346–348. Springer (1983). MR0770423. https://doi.org/10.1007/BFb0068327
Herdegen, M., Herrmann, S.: Single jump processes and strict local martingales. Stoch. Process. Appl. 126(2), 337–359 (2016). MR3434986. https://doi.org/10.1016/j.spa.2015.09.003
Jacod, J., Skorohod, A.V.: Jumping filtrations and martingales with finite variation. In: Séminaire de Probabilités, XXVIII. Lecture Notes in Math., vol. 1583, pp. 21–35. Springer (1994). MR1329098. https://doi.org/10.1007/BFb0073831
Jacod, J.: Multivariate point processes: predictable projection, Radon-Nikodým derivatives, representation of martingales. Z. Wahrscheinlichkeitstheor. Verw. Geb. 31, 235–253 (1975). MR0380978. https://doi.org/10.1007/BF00536010
Jacod, J.: Un théorème de représentation pour les martingales discontinues. Z. Wahrscheinlichkeitstheor. Verw. Geb. 34(3), 225–244 (1976). MR0418222. https://doi.org/10.1007/BF00532705
Jacod, J.: Calcul Stochastique et Problèmes de Martingales. Lecture Notes in Mathematics, vol. 714, p. 539. Springer (1979). MR542115
Jeanblanc, M., Yor, M., Chesney, M.: Mathematical Methods for Financial Markets. Springer Finance, p. 732. Springer (2009). MR2568861. https://doi.org/10.1007/978-1-84628-737-4
Monroe, I.: On embedding right continuous martingales in Brownian motion. Ann. Math. Stat. 43(4), 1293–1311 (1972). MR0343354. https://doi.org/10.1214/aoms/1177692480
Neveu, J.: Processus ponctuels. In: École D’Été de Probabilités de Saint-Flour, VI—1976, pp. 249–445. Springer (1977). MR0474493. https://doi.org/10.1007/BFb0097494
Nikeghbali, A.: A class of remarkable submartingales. Stoch. Process. Appl. 116(6), 917–938 (2006). MR2254665. https://doi.org/10.1016/j.spa.2005.12.003
Vallois, P.: Sur la loi du maximum et du temps local d’une martingale continue uniformement intégrable. Proc. Lond. Math. Soc. (3) 69(2), 399–427 (1994). MR1281971. https://doi.org/10.1112/plms/s3-69.2.399