Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 7, Issue 2 (2020)
  4. Single jump filtrations and local martin ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Single jump filtrations and local martingales
Volume 7, Issue 2 (2020), pp. 135–156
Alexander A. Gushchin ORCID icon link to view author Alexander A. Gushchin details  

Authors

 
Placeholder
https://doi.org/10.15559/20-VMSTA153
Pub. online: 25 May 2020      Type: Research Article      Open accessOpen Access

Received
24 September 2019
Revised
30 April 2020
Accepted
1 May 2020
Published
25 May 2020

Abstract

A single jump filtration ${({\mathcal{F}_{t}})_{t\in {\mathbb{R}_{+}}}}$ generated by a random variable γ with values in ${\overline{\mathbb{R}}_{+}}$ on a probability space $(\Omega ,\mathcal{F},\mathsf{P})$ is defined as follows: a set $A\in \mathcal{F}$ belongs to ${\mathcal{F}_{t}}$ if $A\cap \{\gamma >t\}$ is either ∅ or $\{\gamma >t\}$. A process M is proved to be a local martingale with respect to this filtration if and only if it has a representation ${M_{t}}=F(t){\mathbb{1}_{\{t<\gamma \}}}+L{\mathbb{1}_{\{t\geqslant \gamma \}}}$, where F is a deterministic function and L is a random variable such that $\mathsf{E}|{M_{t}}|<\infty $ and $\mathsf{E}({M_{t}})=\mathsf{E}({M_{0}})$ for every $t\in \{t\in {\mathbb{R}_{+}}:\mathsf{P}(\gamma \geqslant t)>0\}$. This result seems to be new even in a special case that has been studied in the literature, namely, where $\mathcal{F}$ is the smallest σ-field with respect to which γ is measurable (and then the filtration is the smallest one with respect to which γ is a stopping time). As a consequence, a full description of all local martingales is given and they are classified according to their global behaviour.

References

[1] 
Boel, R., Varaiya, P., Wong, E.: Martingales on jump processes. I. Representation results. SIAM J. Control 13(5), 999–1021 (1975). MR0400379. https://doi.org/10.1137/0313063
[2] 
Chou, C.-S., Meyer, P.-A.: Sur la représentation des martingales comme intégrales stochastiques dans les processus ponctuels. In: Séminaire de Probabilités, IX. Lecture Notes in Math., vol. 465, pp. 226–236. Springer (1975). MR0436310. https://doi.org/10.1007/BFb0102993
[3] 
Davis, M.H.A.: The representation of martingales of jump processes. SIAM J. Control Optim. 14(4), 623–638 (1976). MR0418221. https://doi.org/10.1137/0314041
[4] 
Dellacherie, C.: Un exemple de la théorie générale des processus. In: Séminaire de Probabilités, IV. Lecture Notes in Math., vol. 124, pp. 60–70. Springer (1970). MR0263157. https://doi.org/10.1007/BFb0059333
[5] 
Dellacherie, C., Meyer, P.-A.: Probabilities and Potential. North-Holland Mathematics Studies, vol. 29, p. 189. North-Holland Publishing Co., Amsterdam-New York (1978). MR521810
[6] 
Dellacherie, C., Meyer, P.-A.: Probabilities and Potential. B. North-Holland Mathematics Studies, vol. 72, p. 463. North-Holland Publishing Co., Amsterdam (1982). MR745449
[7] 
Dubins, L.E., Gilat, D.: On the distribution of maxima of martingales. Proc. Am. Math. Soc. 68(3), 337–338 (1978). MR0494473. https://doi.org/10.1090/S0002-9939-1978-0494473-4
[8] 
Elliott, R.J.: Stochastic integrals for martingales of a jump process with partially accessible jump times. Z. Wahrscheinlichkeitstheor. Verw. Geb. 36(3), 213–226 (1976). MR0420846. https://doi.org/10.1007/BF00532546
[9] 
Gushchin, A.A.: Stochastic Calculus for Quantitative Finance, p. 185. ISTE Press, London; Elsevier Ltd, Oxford (2015). MR3410512
[10] 
Gushchin, A.A.: The joint law of terminal values of a nonnegative submartingale and its compensator. Theory Probab. Appl. 62(2), 216–235 (2018). MR3649035. https://doi.org/10.1137/S0040585X97T988575
[11] 
Gushchin, A.A.: The joint law of a max-continuous local submartingale and its maximum. Theory Probab. Appl. 65 (2020)
[12] 
He, S.W.: Some remarks on single jump processes. In: Seminar on Probability, XVII. Lecture Notes in Math., vol. 986, pp. 346–348. Springer (1983). MR0770423. https://doi.org/10.1007/BFb0068327
[13] 
Herdegen, M., Herrmann, S.: Single jump processes and strict local martingales. Stoch. Process. Appl. 126(2), 337–359 (2016). MR3434986. https://doi.org/10.1016/j.spa.2015.09.003
[14] 
Jacod, J., Skorohod, A.V.: Jumping filtrations and martingales with finite variation. In: Séminaire de Probabilités, XXVIII. Lecture Notes in Math., vol. 1583, pp. 21–35. Springer (1994). MR1329098. https://doi.org/10.1007/BFb0073831
[15] 
Jacod, J.: Multivariate point processes: predictable projection, Radon-Nikodým derivatives, representation of martingales. Z. Wahrscheinlichkeitstheor. Verw. Geb. 31, 235–253 (1975). MR0380978. https://doi.org/10.1007/BF00536010
[16] 
Jacod, J.: Un théorème de représentation pour les martingales discontinues. Z. Wahrscheinlichkeitstheor. Verw. Geb. 34(3), 225–244 (1976). MR0418222. https://doi.org/10.1007/BF00532705
[17] 
Jacod, J.: Calcul Stochastique et Problèmes de Martingales. Lecture Notes in Mathematics, vol. 714, p. 539. Springer (1979). MR542115
[18] 
Jeanblanc, M., Rutkowski, M.: Modelling of default risk: an overview. In: Mathematical Finance: Theory and Practice, pp. 171–269. Higher Education Press, Beijing (2000)
[19] 
Jeanblanc, M., Yor, M., Chesney, M.: Mathematical Methods for Financial Markets. Springer Finance, p. 732. Springer (2009). MR2568861. https://doi.org/10.1007/978-1-84628-737-4
[20] 
Monroe, I.: On embedding right continuous martingales in Brownian motion. Ann. Math. Stat. 43(4), 1293–1311 (1972). MR0343354. https://doi.org/10.1214/aoms/1177692480
[21] 
Neveu, J.: Processus ponctuels. In: École D’Été de Probabilités de Saint-Flour, VI—1976, pp. 249–445. Springer (1977). MR0474493. https://doi.org/10.1007/BFb0097494
[22] 
Nikeghbali, A.: A class of remarkable submartingales. Stoch. Process. Appl. 116(6), 917–938 (2006). MR2254665. https://doi.org/10.1016/j.spa.2005.12.003
[23] 
Vallois, P.: Sur la loi du maximum et du temps local d’une martingale continue uniformement intégrable. Proc. Lond. Math. Soc. (3) 69(2), 399–427 (1994). MR1281971. https://doi.org/10.1112/plms/s3-69.2.399

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2020 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Filtration local martingale processes with finite variation σ-martingale stopping time

MSC2010
60G44 60G07

Metrics
since March 2018
761

Article info
views

584

Full article
views

532

PDF
downloads

149

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy