Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 3, Issue 1 (2016)
  4. Functional limit theorems for additive a ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Functional limit theorems for additive and multiplicative schemes in the Cox–Ingersoll–Ross model
Volume 3, Issue 1 (2016), pp. 1–17
Yuliia Mishura   Yevheniia Munchak  

Authors

 
Placeholder
https://doi.org/10.15559/16-VMSTA48
Pub. online: 3 March 2016      Type: Research Article      Open accessOpen Access

Received
15 December 2015
Revised
22 February 2016
Accepted
25 February 2016
Published
3 March 2016

Abstract

In this paper, we consider the Cox–Ingersoll–Ross (CIR) process in the regime where the process does not hit zero. We construct additive and multiplicative discrete approximation schemes for the price of asset that is modeled by the CIR process and geometric CIR process. In order to construct these schemes, we take the Euler approximations of the CIR process itself but replace the increments of the Wiener process with iid bounded vanishing symmetric random variables. We introduce a “truncated” CIR process and apply it to prove the weak convergence of asset prices. We establish the fact that this “truncated” process does not hit zero under the same condition considered for the original nontruncated process.

References

[1] 
Alfonsi, A.: On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Methods Appl. 11, 355–384 (2005). MR2186814. doi:10.1163/156939605777438569
[2] 
Berkaoui, A., Bossy, M., Diop, A.: Euler scheme for SDEs with non-Lipschitz diffusion coefficient: strong convergence. ESAIM, Probab. Stat. 12, 1–11 (2008). MR2367990. doi:10.1051/ps:2007030
[3] 
Billingsley, P.: Convergence of Probability Measures. John Wiley and Sons, New York, London, Sydney, Toronto (1968). MR0233396
[4] 
Bossy, M., Diop, A.: An efficient discretization scheme for one dimensional SDEs with a diffusion coefficient function of the form $|x{|}^{a}$, $a\in [1/2,1)$. INRIA, Sophia Antipolis (2007)
[5] 
Brigo, D., Mercurio, F.: Interest Rate Models – Theory and Practice. With Smile, Inflation and Credit, 2nd edn. Springer Finance. Springer, Berlin (2006). MR2255741
[6] 
Broadie, M., Glasserman, P., Kou, S.G.: Connecting discrete continuous path-dependent options. Finance Stoch. 3, 52–82 (1999). MR1805321. doi:10.1007/s007800050052
[7] 
Chang, L., Palmer, K.: Smooth convergence in the binomial model. Finance Stoch. 11, 91–105 (2007). MR2284013. doi:10.1007/s00780-006-0020-6
[8] 
Cox, J.C., Ingersol, J.., Ross, S.: A theory of the term structure of interest rates. Econometrica 53, 385–407 (1985). MR0785475. doi:10.2307/1911242
[9] 
Cutland, N., Kopp, E., Willinger, W.: From discrete to continuous financial models: New convergence results for option pricing. Math. Finance 3, 101–123 (1993)
[10] 
Deelstra, G.: Long-term returns in stochastic interest rate models: Applications. ASTIN Bull. 30, 123–140 (2000). MR1945550. doi:10.2143/AST.30.1.504629
[11] 
Deelstra, G., Delbaen, F.: Long-term returns in stochastic interest rate models: Different convergence results. Appl. Stoch. Models Data Anal. 13, 401–407 (1997). MR1628650. doi:10.1002/(SICI)1099-0747(199709/12)13:3/4<401::AID-ASM334>3.0.CO;2-L
[12] 
Deelstra, G., Delbaen, F.: Convergence of discretized stochastic (interest rate) processes with stochastic drift term. Appl. Stoch. Models Data Anal. 14, 77–84 (1998). MR1641781. doi:10.1002/(SICI)1099-0747(199803)14:1<77::AID-ASM338>3.0.CO;2-2
[13] 
Dereich, S., Neuenkirch, A., Szpruch, L.: An Euler-type method for the strong approximation of the Cox–Ingersoll–Ross process. Proc. R. Soc. A, Math. Phys. Eng. Sci. 468, 1105–1115 (2012). MR2898556. doi:10.1098/rspa.2011.0505
[14] 
Duffie, D., Protter, P.: From discrete- to continuous-time finance: Weak convergence of the financial gain process. Math. Finance 2, 1–15 (1992)
[15] 
Gyongy, I., Rasonyi, M.: A note on Euler approximations for SDEs with Hölder continuous diffusion coefficients. Stoch. Process. Appl. 121, 2189–2200 (2011). MR2822773. doi:10.1016/j.spa.2011.06.008
[16] 
Heston, S.: A closed form solution for options with stochastic volatility, with applications to bonds and currency options. Rev. Financ. Stud. 6, 327–343 (1993)
[17] 
Heston, S., Zhou, G.: On the rate of convergence of discrete-time contingent claims. Math. Finance 10, 53–75 (2000). MR1743973. doi:10.1111/1467-9965.00080
[18] 
Higham, D.J., Mao, X.: Convergence of Monte Carlo simulations involving the mean-reverting square root process. J. Comput. Finance 8, 35–61 (2005)
[19] 
Hubalek, F., Schachermayer, W.: When does convergence of asset price processes imply convergence of option prices? Math. Finance 8, 385–403 (1998). MR1645093. doi:10.1111/1467-9965.00060
[20] 
Ikeda, N., Watanabe, W.: Stochastic Differential Equations and Diffusion Processes, 2nd edn. North-Holland Mathematical Library, vol. 24. North-Holland, Amsterdam (1989). MR1011252
[21] 
Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus. Springer (1991). MR1121940. doi:10.1007/978-1-4612-0949-2
[22] 
Mao, X.: Stochastic Differential Equations and Applications. Horwood Pub. (2008). MR2380366. doi:10.1533/9780857099402
[23] 
Mishura, Y.: Diffusion approximation of recurrent schemes for financial markets, with application to the Ornstein–Uhlenbeck process. Opusc. Math. 35, 99–116 (2015). MR3282967. doi:10.7494/OpMath.2015.35.1.99
[24] 
Mishura, Y.: The rate of convergence of option prices on the asset following geometric Ornstein–Uhlenbeck process. Lith. Math. J. 55, 134–149 (2015). MR3323287. doi:10.1007/s10986-015-9270-3
[25] 
Mishura, Y.: The rate of convergence of option prices when general martingale discrete-time scheme approximates the Black–Scholes model. Banach Cent. Publ., Adv. Math. Finance 104, 151–165 (2015). MR3363984. doi:10.4064/bc104-0-8
[26] 
Mishura, Y., Munchak, Y.: Application of method of pseudomoments to the problem of estimation of rate of convergence of option prices. Theory Probab. Math. Stat. 92, 110–124 (2015) (in Ukrainian)
[27] 
Mishura, Y., Munchak, Y.: The rate of convergence of prices of options issued on the assets following Bernoulli jumps discretization scheme of geometric Ornstein–Uhlenbeck process. Theory Probab. Math. Stat. 93 (2015) (in Ukrainian). MR3363984. doi:10.4064/bc104-0-8
[28] 
Pearson, N.D., Sun, T.S.: Exploiting the conditional density in estimating the term structure: An application to the Cox, Ingersoll and Ross model. J. Finance 49, 1279–1304 (1994)
[29] 
Zhu, L.: Limit theorems for a Cox–Ingersoll–Ross process with Hawkes jumps. J. Appl. Probab. 51, 699–712 (2014). MR3256221. doi:10.1239/jap/1409932668

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2016 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Cox–Ingersoll–Ross process discrete approximation scheme functional limit theorems

MSC2010
60F99 60G07 91B25

Metrics
since March 2018
721

Article info
views

631

Full article
views

352

PDF
downloads

162

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy