Let $\{\xi _{1},\xi _{2},\dots \}$ be a sequence of independent random variables, and η be a counting random variable independent of this sequence. We consider conditions for $\{\xi _{1},\xi _{2},\dots \}$ and η under which the distribution function of the random sum $S_{\eta }=\xi _{1}+\xi _{2}+\cdots +\xi _{\eta }$ belongs to the class of consistently varying distributions. In our consideration, the random variables $\{\xi _{1},\xi _{2},\dots \}$ are not necessarily identically distributed.
We establish the large deviation principle for solutions of one-dimensional SDEs with discontinuous coefficients. The main statement is formulated in a form similar to the classical Wentzel–Freidlin theorem, but under the considerably weaker assumption that the coefficients have no discontinuities of the second kind.
Let $\{\xi _{1},\xi _{2},\dots \}$ be a sequence of independent random variables (not necessarily identically distributed), and η be a counting random variable independent of this sequence. We obtain sufficient conditions on $\{\xi _{1},\xi _{2},\dots \}$ and η under which the distribution function of the random sum $S_{\eta }=\xi _{1}+\xi _{2}+\cdots +\xi _{\eta }$ belongs to the class of $\mathcal{O}$-exponential distributions.
We establish the Gärtner–Ellis condition for the square of an asymptotically stationary Gaussian process. The same limit holds for the conditional distribution given any fixed initial point, which entails weak multiplicative ergodicity. The limit is shown to be the Laplace transform of a convolution of gamma distributions with Poisson compound of exponentials. A proof based on the Wiener–Hopf factorization induces a probabilistic interpretation of the limit in terms of a regression problem.