Random convolution of inhomogeneous distributions with -exponential tail
Volume 3, Issue 1 (2016), pp. 79–94
Pub. online: 4 April 2016
Type: Research Article
Open Access
Received
28 January 2016
28 January 2016
Revised
21 March 2016
21 March 2016
Accepted
21 March 2016
21 March 2016
Published
4 April 2016
4 April 2016
Abstract
Let $\{\xi _{1},\xi _{2},\dots \}$ be a sequence of independent random variables (not necessarily identically distributed), and η be a counting random variable independent of this sequence. We obtain sufficient conditions on $\{\xi _{1},\xi _{2},\dots \}$ and η under which the distribution function of the random sum $S_{\eta }=\xi _{1}+\xi _{2}+\cdots +\xi _{\eta }$ belongs to the class of $\mathcal{O}$-exponential distributions.
References
Albin, J.M.P., Sundén, M.: On the asymptotic behaviour of Levy processes, Part I: Subexponential and exponential processes. Stoch. Process. Appl. 119, 281–304 (2009). MR2485028. doi:10.1016/j.spa.2008.02.004
Chistyakov, V.P.: A theorem on sums of independent positive random variables and its application to branching processes. Theory Probab. Appl. 9, 640–648 (1964). doi:10.1137/1109088
Cline, D.B.H.: Convolutions of distributions with exponential and subexponential tails. J. Aust. Math. Soc. A 43, 347–365 (1987). MR0904394. doi:10.1017/S1446788700029633
Danilenko, S., Šiaulys, J.: Random convolution of $\mathcal{O}$-exponential distributions. Nonlinear Anal., Model. Control 20, 447–454 (2015). MR3339844
Denisov, D., Foss, S., Korshunov, D.: Tail asymptotics for the supremum of random walk when the mean is not finite. Queueing Syst. 46, 35–73 (2004). MR2072274. doi:10.1023/B:QUES.0000021140.87161.9c
Denisov, D., Foss, S., Korshunov, D.: Asymptotics of randomly stopped sums in the presence of heavy tails. Bernoulli 16, 971–994 (2010). MR2759165. doi:10.3150/10-BEJ251
Embrechts, P., Goldie, C.M.: On closure and factorization properties of subexponential and related distributions. J. Aust. Math. Soc. A 29, 243–256 (1980). MR0566289. doi:10.1017/S1446788700021224
Embrechts, P., Goldie, C.M.: On convolution tails. Stoch. Process. Appl. 13, 263–278 (1982). MR0671036. doi:10.1016/0304-4149(82)90013-8
Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer, New York (1997). MR1458613. doi:10.1007/978-3-642-33483-2
Foss, C., Korshunov, D., Zachary, S.: An Introduction to Heavy-Tailed and Subexponential Distributions. Springer, New York (2011). MR2810144. doi:10.1007/978-1-4419-9473-8
Kaas, R., Tang, Q.: Note on the tail behavior of random walk maxima with heavy tails and negative drift. N. Am. Actuar. J. 7, 57–61 (2003). MR2062552. doi:10.1080/10920277.2003.10596103
Leipus, R., Šiaulys, J.: Closure of some heavy-tailed distribution classes under random convolution. Lith. Math. J. 52, 249–258 (2012). MR3020941. doi:10.1007/s10986-012-9171-7
Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, Cambridge (2005). MR2144605. doi:10.1017/CBO9780511813603
Petrov, V.V.: Limit Theorems of Probability Theory: Sequences of Independent Random Variables. Clarendon Press, Oxford (1995). MR1353441
Shimura, T., Watanabe, T.: Infinite divisibility and generalized subexponentiality. Bernoulli 11, 445–469 (2005). MR2146890. doi:10.3150/bj/1120591184