Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 3, Issue 1 (2016)
  4. Random convolution of inhomogeneous dist ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Random convolution of inhomogeneous distributions with O-exponential tail
Volume 3, Issue 1 (2016), pp. 79–94
Svetlana Danilenko   Simona Paškauskaitė   Jonas Šiaulys  

Authors

 
Placeholder
https://doi.org/10.15559/16-VMSTA52
Pub. online: 4 April 2016      Type: Research Article      Open accessOpen Access

Received
28 January 2016
Revised
21 March 2016
Accepted
21 March 2016
Published
4 April 2016

Abstract

Let $\{\xi _{1},\xi _{2},\dots \}$ be a sequence of independent random variables (not necessarily identically distributed), and η be a counting random variable independent of this sequence. We obtain sufficient conditions on $\{\xi _{1},\xi _{2},\dots \}$ and η under which the distribution function of the random sum $S_{\eta }=\xi _{1}+\xi _{2}+\cdots +\xi _{\eta }$ belongs to the class of $\mathcal{O}$-exponential distributions.

References

[1] 
Albin, J.M.P., Sundén, M.: On the asymptotic behaviour of Levy processes, Part I: Subexponential and exponential processes. Stoch. Process. Appl. 119, 281–304 (2009). MR2485028. doi:10.1016/j.spa.2008.02.004
[2] 
Chistyakov, V.P.: A theorem on sums of independent positive random variables and its application to branching processes. Theory Probab. Appl. 9, 640–648 (1964). doi:10.1137/1109088
[3] 
Cline, D.B.H.: Convolutions of distributions with exponential and subexponential tails. J. Aust. Math. Soc. A 43, 347–365 (1987). MR0904394. doi:10.1017/S1446788700029633
[4] 
Danilenko, S., Šiaulys, J.: Random convolution of $\mathcal{O}$-exponential distributions. Nonlinear Anal., Model. Control 20, 447–454 (2015). MR3339844
[5] 
Denisov, D., Foss, S., Korshunov, D.: Tail asymptotics for the supremum of random walk when the mean is not finite. Queueing Syst. 46, 35–73 (2004). MR2072274. doi:10.1023/B:QUES.0000021140.87161.9c
[6] 
Denisov, D., Foss, S., Korshunov, D.: Asymptotics of randomly stopped sums in the presence of heavy tails. Bernoulli 16, 971–994 (2010). MR2759165. doi:10.3150/10-BEJ251
[7] 
Embrechts, P., Goldie, C.M.: On closure and factorization properties of subexponential and related distributions. J. Aust. Math. Soc. A 29, 243–256 (1980). MR0566289. doi:10.1017/S1446788700021224
[8] 
Embrechts, P., Goldie, C.M.: On convolution tails. Stoch. Process. Appl. 13, 263–278 (1982). MR0671036. doi:10.1016/0304-4149(82)90013-8
[9] 
Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer, New York (1997). MR1458613. doi:10.1007/978-3-642-33483-2
[10] 
Foss, C., Korshunov, D., Zachary, S.: An Introduction to Heavy-Tailed and Subexponential Distributions. Springer, New York (2011). MR2810144. doi:10.1007/978-1-4419-9473-8
[11] 
Kaas, R., Tang, Q.: Note on the tail behavior of random walk maxima with heavy tails and negative drift. N. Am. Actuar. J. 7, 57–61 (2003). MR2062552. doi:10.1080/10920277.2003.10596103
[12] 
Leipus, R., Šiaulys, J.: Closure of some heavy-tailed distribution classes under random convolution. Lith. Math. J. 52, 249–258 (2012). MR3020941. doi:10.1007/s10986-012-9171-7
[13] 
Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, Cambridge (2005). MR2144605. doi:10.1017/CBO9780511813603
[14] 
Petrov, V.V.: Limit Theorems of Probability Theory: Sequences of Independent Random Variables. Clarendon Press, Oxford (1995). MR1353441
[15] 
Shimura, T., Watanabe, T.: Infinite divisibility and generalized subexponentiality. Bernoulli 11, 445–469 (2005). MR2146890. doi:10.3150/bj/1120591184

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2016 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Heavy tail exponential tail O-exponential tail random sum random convolution inhomogeneous distributions closure property

MSC2010
62E20 60E05 60F10 44A35

Metrics
since March 2018
579

Article info
views

566

Full article
views

343

PDF
downloads

161

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy