Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 3, Issue 2 (2016)
  4. Randomly stopped sums with consistently ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Randomly stopped sums with consistently varying distributions
Volume 3, Issue 2 (2016), pp. 165–179
Edita Kizinevič   Jonas Sprindys   Jonas Šiaulys  

Authors

 
Placeholder
https://doi.org/10.15559/16-VMSTA60
Pub. online: 4 July 2016      Type: Research Article      Open accessOpen Access

Received
13 May 2016
Accepted
23 June 2016
Published
4 July 2016

Abstract

Let $\{\xi _{1},\xi _{2},\dots \}$ be a sequence of independent random variables, and η be a counting random variable independent of this sequence. We consider conditions for $\{\xi _{1},\xi _{2},\dots \}$ and η under which the distribution function of the random sum $S_{\eta }=\xi _{1}+\xi _{2}+\cdots +\xi _{\eta }$ belongs to the class of consistently varying distributions. In our consideration, the random variables $\{\xi _{1},\xi _{2},\dots \}$ are not necessarily identically distributed.

References

[1] 
Albin, J.M.P.: A note on the closure of convolution power mixtures (random sums) of exponential distributions. J. Aust. Math. Soc. 84, 1–7 (2008). MR2469263. doi:10.1017/S1446788708000104
[2] 
Cai, J., Tang, Q.: On max-sum equivalence and convolution closure of heavy-tailed distributions and their applications. J. Appl. Probab. 41, 117–130 (2004). MR2036276. doi:10.1239/jap/1077134672
[3] 
Chen, Y., Yuen, K.C.: Sums of pairwise quasi-asymptotically independent random variables with consistent variation. Stoch. Models 25, 76–89 (2009). MR2494614. doi:10.1080/15326340802641006
[4] 
Chistyakov, V.P.: A theorem on sums of independent positive random variables and its application to branching processes. Theory Probab. Appl. 9, 640–648 (1964). doi:10.1137/1109088
[5] 
Cline, D.B.H.: Convolutions of distributions with exponential and subexponential tails. J. Aust. Math. Soc. A 43, 347–365 (1987). MR0904394. doi:10.1017/S1446788700029633
[6] 
Danilenko, S., Šiaulys, J.: Randomly stopped sums of not identically distributed heavy tailed random variables. Stat. Probab. Lett. 113, 84–93 (2016). MR3480399. doi:10.1016/j.spl.2016.03.001
[7] 
Danilenko, S., Paškauskaitė, S., Šiaulys, J.: Random convolution of inhomogeneous distributions with $\mathcal{O}$-exponential tail. Mod. Stoch. Theory Appl. 3, 79–94 (2016). doi:10.15559/16-VMSTA52
[8] 
Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer, New York (1997). 1997. MR1458613. doi:10.1007/978-3-642-33483-2
[9] 
Embrechts, P., Goldie, C.M.: On convolution tails. Stoch. Process. Appl. 13, 263–278 (1982). MR0671036. doi:10.1016/0304-4149(82)90013-8
[10] 
Embrechts, P., Goldie, C.M., Veraverbeke, N.: Subexponentiality and infinite divisibility. Z. Wahrscheinlichkeitstheor. Verw. Geb. 49, 335–347 (1979). MR0547833. doi:10.1007/BF00535504
[11] 
Embrechts, P., Omey, E.: A property of longtailed distributions. J. Appl. Probab. 21, 80–87 (1984). MR0732673. doi:10.2307/3213666
[12] 
Foss, S., Korshunov, D., Zachary, S.: An Introduction to Heavy-Tailed and Subexponential Distributions. Springer, New York (2011). MR2810144. doi:10.1007/978-1-4419-9473-8
[13] 
Klüppelberg, C.: Subexponential distributions and integrated tails. J. Appl. Probab. 25, 132–141 (1988). MR0929511. doi:10.2307/3214240
[14] 
Leipus, R., Šiaulys, J.: Closure of some heavy-tailed distribution classes under random convolution. Lith. Math. J. 52, 249–258 (2012). MR3020941. doi:10.1007/s10986-012-9171-7
[15] 
Wang, D., Tang, Q.: Tail probabilities of randomly weighted sums of random variables with dominated variation. Stoch. Models 22, 253–272 (2006). MR2220965. doi:10.1080/15326340600649029
[16] 
Watanabe, T., Yamamuro, K.: Ratio of the tail of an infinitely divisible distribution on the line to that of its Lévy measure. Electron. J. Probab. 15, 44–75 (2010). MR2578382. doi:10.1214/EJP.v15-732
[17] 
Xu, H., Foss, S., Wang, Y.: On closedness under convolution and convolution roots of the class of long-tailed distributions. Extremes 18, 605–628 (2015). MR3418770. doi:10.1007/s10687-015-0224-2

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2016 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Heavy tail consistently varying tail randomly stopped sum inhomogeneous distributions convolution closure random convolution closure

MSC2010
62E20 60E05 60F10 44A35

Metrics
since March 2018
1545

Article info
views

472

Full article
views

354

PDF
downloads

146

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy