Randomly stopped sums with consistently varying distributions
Volume 3, Issue 2 (2016), pp. 165–179
Pub. online: 4 July 2016
Type: Research Article
Open Access
Received
13 May 2016
13 May 2016
Accepted
23 June 2016
23 June 2016
Published
4 July 2016
4 July 2016
Abstract
Let $\{\xi _{1},\xi _{2},\dots \}$ be a sequence of independent random variables, and η be a counting random variable independent of this sequence. We consider conditions for $\{\xi _{1},\xi _{2},\dots \}$ and η under which the distribution function of the random sum $S_{\eta }=\xi _{1}+\xi _{2}+\cdots +\xi _{\eta }$ belongs to the class of consistently varying distributions. In our consideration, the random variables $\{\xi _{1},\xi _{2},\dots \}$ are not necessarily identically distributed.
References
Albin, J.M.P.: A note on the closure of convolution power mixtures (random sums) of exponential distributions. J. Aust. Math. Soc. 84, 1–7 (2008). MR2469263. doi:10.1017/S1446788708000104
Cai, J., Tang, Q.: On max-sum equivalence and convolution closure of heavy-tailed distributions and their applications. J. Appl. Probab. 41, 117–130 (2004). MR2036276. doi:10.1239/jap/1077134672
Chen, Y., Yuen, K.C.: Sums of pairwise quasi-asymptotically independent random variables with consistent variation. Stoch. Models 25, 76–89 (2009). MR2494614. doi:10.1080/15326340802641006
Chistyakov, V.P.: A theorem on sums of independent positive random variables and its application to branching processes. Theory Probab. Appl. 9, 640–648 (1964). doi:10.1137/1109088
Cline, D.B.H.: Convolutions of distributions with exponential and subexponential tails. J. Aust. Math. Soc. A 43, 347–365 (1987). MR0904394. doi:10.1017/S1446788700029633
Danilenko, S., Šiaulys, J.: Randomly stopped sums of not identically distributed heavy tailed random variables. Stat. Probab. Lett. 113, 84–93 (2016). MR3480399. doi:10.1016/j.spl.2016.03.001
Danilenko, S., Paškauskaitė, S., Šiaulys, J.: Random convolution of inhomogeneous distributions with $\mathcal{O}$-exponential tail. Mod. Stoch. Theory Appl. 3, 79–94 (2016). doi:10.15559/16-VMSTA52
Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer, New York (1997). 1997. MR1458613. doi:10.1007/978-3-642-33483-2
Embrechts, P., Goldie, C.M.: On convolution tails. Stoch. Process. Appl. 13, 263–278 (1982). MR0671036. doi:10.1016/0304-4149(82)90013-8
Embrechts, P., Goldie, C.M., Veraverbeke, N.: Subexponentiality and infinite divisibility. Z. Wahrscheinlichkeitstheor. Verw. Geb. 49, 335–347 (1979). MR0547833. doi:10.1007/BF00535504
Embrechts, P., Omey, E.: A property of longtailed distributions. J. Appl. Probab. 21, 80–87 (1984). MR0732673. doi:10.2307/3213666
Foss, S., Korshunov, D., Zachary, S.: An Introduction to Heavy-Tailed and Subexponential Distributions. Springer, New York (2011). MR2810144. doi:10.1007/978-1-4419-9473-8
Klüppelberg, C.: Subexponential distributions and integrated tails. J. Appl. Probab. 25, 132–141 (1988). MR0929511. doi:10.2307/3214240
Leipus, R., Šiaulys, J.: Closure of some heavy-tailed distribution classes under random convolution. Lith. Math. J. 52, 249–258 (2012). MR3020941. doi:10.1007/s10986-012-9171-7
Wang, D., Tang, Q.: Tail probabilities of randomly weighted sums of random variables with dominated variation. Stoch. Models 22, 253–272 (2006). MR2220965. doi:10.1080/15326340600649029
Watanabe, T., Yamamuro, K.: Ratio of the tail of an infinitely divisible distribution on the line to that of its Lévy measure. Electron. J. Probab. 15, 44–75 (2010). MR2578382. doi:10.1214/EJP.v15-732
Xu, H., Foss, S., Wang, Y.: On closedness under convolution and convolution roots of the class of long-tailed distributions. Extremes 18, 605–628 (2015). MR3418770. doi:10.1007/s10687-015-0224-2