Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 3, Issue 2 (2016)
  4. Randomly stopped sums with consistently ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Randomly stopped sums with consistently varying distributions
Volume 3, Issue 2 (2016), pp. 165–179
Edita Kizinevič   Jonas Sprindys   Jonas Šiaulys  

Authors

 
Placeholder
https://doi.org/10.15559/16-VMSTA60
Pub. online: 4 July 2016      Type: Research Article      Open accessOpen Access

Received
13 May 2016
Accepted
23 June 2016
Published
4 July 2016

Abstract

Let $\{\xi _{1},\xi _{2},\dots \}$ be a sequence of independent random variables, and η be a counting random variable independent of this sequence. We consider conditions for $\{\xi _{1},\xi _{2},\dots \}$ and η under which the distribution function of the random sum $S_{\eta }=\xi _{1}+\xi _{2}+\cdots +\xi _{\eta }$ belongs to the class of consistently varying distributions. In our consideration, the random variables $\{\xi _{1},\xi _{2},\dots \}$ are not necessarily identically distributed.

1 Introduction

Let $\{\xi _{1},\xi _{2},\dots \}$ be a sequence of independent random variables (r.v.s) with distribution functions (d.f.s) $\{F_{\xi _{1}},F_{\xi _{2}},\dots \}$, and let η be a counting r.v., that is, an integer-valued, nonnegative, and nondegenerate at zero r.v. In addition, suppose that the r.v. η and r.v.s $\{\xi _{1},\xi _{2},\dots \}$ are independent. Let $S_{0}=0$, $S_{n}=\xi _{1}+\xi _{2}+\cdots +\xi _{n}$ for $n\in \mathbb{N}$, and let
\[ S_{\eta }={\sum \limits_{k=1}^{\eta }}\xi _{k}\]
be the randomly stopped sum of r.v.s $\{\xi _{1},\xi _{2},\dots \}$.
We are interested in conditions under which the d.f. of $S_{\eta }$,
(1)
\[ F_{S_{\eta }}(x)=\mathbb{P}(S_{\eta }\leqslant x)={\sum \limits_{n=0}^{\infty }}\mathbb{P}(\eta =n)\mathbb{P}(S_{n}\leqslant x),\]
belongs to the class of consistently varying distributions.
Throughout this paper, $f(x)=o(g(x))$ means that $\lim _{x\to \infty }f(x)/g(x)=0$, and $f(x)\sim g(x)$ means that $\lim _{x\to \infty }f(x)/g(x)=1$ for two vanishing (at infinity) functions f and g. Also, we denote the support of a counting r.v. η by
\[ \mathrm{supp}(\eta ):=\big\{n\in \mathbb{N}_{0}:\mathbb{P}(\eta =n)>0\big\}.\]
Before discussing the properties of $F_{S_{\eta }}$, we recall the definitions of some classes of heavy-tailed d.f.s, where $\overline{F}(x)=1-F(x)$ for all real x and a d.f. F.
  • • A d.f. F is heavy-tailed $(F\in \mathcal{H})$ if for every fixed $\delta >0$,
    \[ \underset{x\to \infty }{\lim }\overline{F}(x){\mathrm{e}}^{\delta x}=\infty .\]
  • • A d.f. F is long-tailed $(F\in \mathcal{L})$ if for every y (equivalently, for some $y>0$),
    \[ \overline{F}(x+y)\sim \overline{F}(x).\]
  • • A d.f. F has a dominatedly varying tail $(F\in \mathcal{D})$ if for every fixed $y\in (0,1)$ (equivalently, for some $y\in (0,1)$),
    \[ \underset{x\to \infty }{\limsup }\frac{\overline{F}(xy)}{\overline{F}(x)}<\infty .\]
  • • A d.f. F has a consistently varying tail $(F\in \mathcal{C})$ if
    \[ \underset{y\uparrow 1}{\lim }\underset{x\to \infty }{\limsup }\frac{\overline{F}(xy)}{\overline{F}(x)}=1.\]
  • • A d.f. F has a regularly varying tail $(F\in \mathcal{R})$ if
    \[ \underset{x\to \infty }{\lim }\frac{\overline{F}(xy)}{\overline{F}(x)}={y}^{-\alpha }\]
    for some $\alpha \geqslant 0$ and any fixed $y>0$.
  • • A d.f. F supported on the interval $[0,\infty )$ is subexponential $(F\in \mathcal{S})$ if
    (2)
    \[ \underset{x\to \infty }{\lim }\frac{\overline{F\ast F}(x)}{\overline{F}(x)}=2.\]
    If a d.f. G is supported on $\mathbb{R}$, then we suppose that G is subexponential $(G\in \mathcal{S})$ if the d.f. $F(x)=G(x)\mathbb{1}_{[0,\infty )}(x)$ satisfies relation (2).
It is known (see, e.g., [4, 11, 13], and Chapters 1.4 and A3 in [8]) that these classes satisfy the following inclusions:
\[ \mathcal{R}\subset \mathcal{C}\subset \mathcal{L}\cap \mathcal{D}\subset \mathcal{S}\subset \mathcal{L}\subset \mathcal{H},\hspace{2em}\mathcal{D}\subset \mathcal{H}.\]
These inclusions are depicted in Fig. 1 with the class $\mathcal{C}$ highlighted.
vmsta-3-2-vmsta60-g001.jpg
Fig. 1.
Classes of heavy-tailed distributions.
There exist many results on sufficient or necessary and sufficient conditions in order that the d.f. of the randomly stopped sum (1) belongs to some heavy-tailed distribution class. Here we present a few known results concerning the belonging of the d.f. $F_{S_{\eta }}$ to some class. The first result on subexponential distributions was proved by Embrechts and Goldie (see Theorem 4.2 in [9]) and Cline (see Theorem 2.13 in [5]).
Theorem 1.
Let $\{\xi _{1},\xi _{2},\dots \}$ be independent copies of a nonnegative r.v. ξ with subexponential d.f. $F_{\xi }$. Let η be a counting r.v. independent of $\{\xi _{1},\xi _{2},\dots \}$. If $\mathbb{E}{(1+\delta )}^{\eta }<\infty $ for some $\delta >0$, then the d.f. $F_{S_{\eta }}\in \mathcal{S}$.
Similar results for the class $\mathcal{D}$ can be found in Leipus and Šiaulys [14]. We present the statement of Theorem 5 from this work.
Theorem 2.
Let $\{\xi _{1},\xi _{2},\dots \}$ be i.i.d. nonnegative r.v.s with common d.f. $F_{\xi }\in \mathcal{D}$ and finite mean $\mathbb{E}\xi $. Let η be a counting r.v. independent of $\{\xi _{1},\xi _{2},\dots \}$ with d.f. $F_{\eta }$ and finite mean $\mathbb{E}\eta $. Then d.f. $F_{S_{\eta }}\in \mathcal{D}$ iff   $\min \{F_{\xi },F_{\eta }\}\in \mathcal{D}$.
We recall only that the d.f. F belongs to the class $\mathcal{D}$ if and only if the upper Matuszewska index ${J_{F}^{+}}<\infty $, where, by definition,
\[ {J_{F}^{+}}=-\underset{y\to \infty }{\lim }\frac{1}{\log y}\log \bigg(\underset{x\to \infty }{\liminf }\frac{\overline{F}(xy)}{\overline{F}(x)}\bigg).\]
The random convolution closure for the class $\mathcal{L}$ was considered, for instance, in [1, 14, 16, 17]. We now present a particular statement of Theorem 1.1 from [17].
Theorem 3.
Let $\{\xi _{1},\xi _{2},\dots \}$ be independent r.v.s, and η be a counting r.v. independent of $\{\xi _{1},\xi _{2},\dots \}$ with d.f. $F_{\eta }$. Then the d.f. $F_{S_{\eta }}\in \mathcal{L}$ if the following five conditions are satisfied:
  • (i) $\mathbb{P}(\eta \geqslant \kappa )>0$ for some $\kappa \in \mathbb{N}$;
  • (ii) for all $k\geqslant \kappa $, the d.f. $F_{S_{k}}$ of the sum $S_{k}$ is long tailed;
  • (iii) $\underset{k\geqslant 1}{\sup }\underset{x\in \mathbb{R}}{\sup }(F_{S_{k}}(x)-F_{S_{k}}(x-1))\sqrt{k}<\infty $;
  • (iv) $\underset{z\to \infty }{\limsup }\hspace{0.1667em}\underset{k\geqslant \kappa }{\sup }\hspace{0.1667em}\underset{x\geqslant k(z-1)+z}{\sup }\displaystyle\frac{\overline{F}_{S_{k}}(x-1)}{\overline{F}_{S_{k}}(x)}=1$;
  • (v) $\overline{F}_{\eta }(ax)=o(\sqrt{x}\hspace{0.1667em}\overline{F}_{S_{\kappa }}(x))$ for each $a>0$.
We observe that the case of identically distributed r.v.s is considered in Theorems 1 and 2. In Theorem 3, r.v.s $\{\xi _{1},\xi _{2},\dots \}$ are independent but not necessarily identically distributed. A similar result for r.v.s having d.f.s with dominatedly varying tails can be found in [6].
Theorem 4 ([6], Theorem 2.1).
Let r.v.s $\{\xi _{1},\xi _{2},\dots \}$ be nonnegative independent, not necessarily identically distributed, and η be a counting r.v. independent of $\{\xi _{1},\xi _{2},\dots \}$. Then the d.f $F_{S_{\eta }}$ belongs to the class $\mathcal{D}$ if the following three conditions are satisfied:
  • (i) $F_{\xi _{\kappa }}\in \mathcal{D}$ for some $\kappa \in \mathrm{supp}(\eta )$,
  • (ii) $\underset{x\to \infty }{\limsup }\underset{n\geqslant \kappa }{\sup }\displaystyle\frac{1}{n\overline{F}_{\xi _{\kappa }}(x)}{\displaystyle\sum \limits_{i=1}^{n}}\overline{F}_{\xi _{i}}(x)<\infty $,
  • (iii) $\mathbb{E}{\eta }^{p+1}<\infty $ for some $p>{J_{F_{\xi _{\kappa }}}^{+}}$.
In this work, we consider randomly stopped sums of independent and not necessarily identically distributed r.v.s. As noted before, we restrict ourselves on the class $\mathcal{C}$. If r.v.s $\{\xi _{1},\xi _{2},\dots \}$ are not identically distributed, then different collections of conditions on $\{\xi _{1},\xi _{2},\dots \}$ and η imply that $F_{S_{\eta }}\in \mathcal{C}$. We suppose that some r.v.s from $\{\xi _{1},\xi _{2},\dots \}$ have distributions belonging to the class $\mathcal{C}$, and we find minimal conditions on $\{\xi _{1},\xi _{2},\dots \}$ and η for the distribution of the randomly stopped sum $S_{\eta }$ to remain in the same class. It should be noted that we use the methods developed in [6] and [7].
The rest of the paper is organized as follows. In Section 2, we present our main results together with two examples of randomly stopped sums $S_{\eta }$ with d.f.s having consistently varying tails. Section 3 is a collection of auxiliary lemmas, and the proofs of the main results are presented in Section 4.

2 Main results

In this section, we present three statements in which we describe the belonging of a randomly stopped sum to the class $\mathcal{C}$. In the conditions of Theorem 5, the counting r.v. η has a finite support. Theorem 6 describes the situation where no moment conditions on the r.v.s $\{\xi _{1},\xi _{2},\dots \}$ are required, but there is strict requirement for η. Theorem 7 deals with the opposite case: the r.v.s $\{\xi _{1},\xi _{2},\dots \}$ should have finite means, whereas the requirement for η is weaker. It should be noted that the case of real-valued r.v.s $\{\xi _{1},\xi _{2},\dots \}$ is considered in Theorems 5 and 6, whereas Theorem 7 deals with nonnegative r.v.s.
Theorem 5.
Let $\{\xi _{1},\xi _{2},\dots ,\xi _{D}\}$, $D\in \mathbb{N}$, be independent real-valued r.v.s, and η be a counting r.v. independent of $\{\xi _{1},\xi _{2},\dots ,\xi _{D}\}$. Then the d.f. $F_{S_{\eta }}$ belongs to the class $\mathcal{C}$ if the following conditions are satisfied:
  • (a) $\mathbb{P}(\eta \leqslant D)=1$,
  • (b) $F_{\xi _{1}}\in \mathcal{C}$,
  • (c) for each $k=2,\dots ,D$, either $F_{\xi _{k}}\in \mathcal{C}$ or $\overline{F}_{\xi _{k}}(x)=o(\overline{F}_{\xi _{1}}(x))$.
Theorem 6.
Let $\{\xi _{1},\xi _{2},\dots \}$ be independent real-valued r.v.s, and η be a counting r.v. independent of $\{\xi _{1},\xi _{2},\dots \}$. Then the d.f. $F_{S_{\eta }}$ belongs to the class $\mathcal{C}$ if the following conditions are satisfied:
  • (a) $F_{\xi _{1}}\in \mathcal{C}$,
  • (b) for each $k\geqslant 2$, either $F_{\xi _{k}}\in \mathcal{C}$ or $\overline{F}_{\xi _{k}}(x)=o(\overline{F}_{\xi _{1}}(x))$,
  • (c) $\underset{x\to \infty }{\limsup }\underset{n\geqslant 1}{\sup }\displaystyle\frac{1}{n\overline{F}_{\xi _{1}}(x)}{\displaystyle\sum \limits_{i=1}^{n}}\overline{F}_{\xi _{i}}(x)<\infty $,
  • (d) $\mathbb{E}{\eta }^{p+1}<\infty $ for some $p>{J_{F_{\xi _{1}}}^{+}}$.
When $\{\xi _{1},\xi _{2},\dots \}$ are identically distributed with common d.f. $F_{\xi }\in \mathcal{C}$, conditions (a), (b), and (c) of Theorem 6 are satisfied obviously. Hence, we have the following corollary.
Corollary 1 (See also Theorem 3.4 in [3]).
Let $\{\xi _{1},\xi _{2},\dots \}$ be i.i.d. real-valued r.v.s with d.f. $F_{\xi }\in \mathcal{C}$, and η be a counting r.v. independent of $\{\xi _{1},\xi _{2},\dots \}$. Then the d.f. $F_{S_{\eta }}$ belongs to the class $\mathcal{C}$ if  $\mathbb{E}{\eta }^{p+1}<\infty $ for some $p>{J_{F_{\xi }}^{+}}$.
Theorem 7.
Let $\{\xi _{1},\xi _{2},\dots \}$ be independent nonnegative r.v.s, and η be a counting r.v. independent of $\{\xi _{1},\xi _{2},\dots \}$. Then the d.f. $F_{S_{\eta }}$ belongs to the class $\mathcal{C}$ if the following conditions are satisfied:
  • (a) $F_{\xi _{1}}\in \mathcal{C}$,
  • (b) for each $k\geqslant 2$, either $F_{\xi _{k}}\in \mathcal{C}$ or $\overline{F}_{\xi _{k}}(x)=o(\overline{F}_{\xi _{1}}(x))$,
  • (c) $\mathbb{E}\xi _{1}<\infty $,
  • (d) $\overline{F}_{\eta }(x)=o(\overline{F}_{\xi _{1}}(x))$,
  • (e) $\underset{x\to \infty }{\limsup }\underset{n\geqslant 1}{\sup }\displaystyle\frac{1}{n\overline{F}_{\xi _{1}}(x)}{\displaystyle\sum \limits_{i=1}^{n}}\overline{F}_{\xi _{i}}(x)<\infty $,
  • (f) $\underset{u\to \infty }{\limsup }\underset{n\geqslant 1}{\sup }\displaystyle\frac{1}{n}{\displaystyle\sum \limits_{\begin{array}{c} k=1\\{} \mathbb{E}\xi _{k}\geqslant u\end{array}}^{n}}\mathbb{E}\xi _{k}=0$.
Similarly to Corollary 1, we can formulate the following statement. We note that, in the i.i.d. case, conditions (a), (b), (e), and (f) of Theorem 7 are satisfied.
Corollary 2.
Let $\{\xi _{1},\xi _{2},\dots \}$ be i.i.d. nonnegative r.v.s with common d.f. $F_{\xi }\in \mathcal{C}$, and η be a counting r.v. independent of $\{\xi _{1},\xi _{2},\dots \}$. Then the d.f. $F_{S_{\eta }}$ belongs to the class $\mathcal{C}$ under the following two conditions: $\mathbb{E}\xi <\infty $ and $\overline{F}_{\eta }(x)=o(\overline{F}_{\xi }(x))$.
Further in this section, we present two examples of r.v.s $\{\xi _{1},\xi _{2},\dots \}$ and η for which the random sum $F_{S_{\eta }}$ has a consistently varying tail.
Example 1.
Let $\{\xi _{1},\xi _{2},\dots \}$ be independent r.v.s such that $\xi _{k}$ are exponentially distributed for all even k, that is,
\[ \overline{F}_{\xi _{k}}(x)={\mathrm{e}}^{-x},\hspace{1em}x\geqslant 0,\hspace{0.1667em}k\in \{2,4,6,\dots \},\]
whereas, for each odd k, $\xi _{k}$ is a copy of the r.v.
\[ (1+\mathcal{U})\hspace{0.1667em}{2}^{\mathcal{G}},\]
where $\mathcal{U}$ and $\mathcal{G}$ are independent r.v.s, $\mathcal{U}$ is uniformly distributed on the interval $[0,1]$, and $\mathcal{G}$ is geometrically distributed with parameter $q\in (0,1)$, that is,
\[ \mathbb{P}(\mathcal{G}=l)=(1-q)\hspace{0.1667em}{q}^{l},\hspace{1em}l=0,1,\dots .\]
In addition, let η be a counting r.v. independent of $\{\xi _{1},\xi _{2},\dots \}$ and distributed according to the Poisson law.
Theorem 6 implies that the d.f. of the randomly stopped sum $S_{\eta }$ belongs to the class $\mathcal{C}$ because:
  • (a) $F_{\xi _{1}}\in \mathcal{C}$ due to considerations in pp. 122–123 of [2],
  • (b) $F_{\xi _{k}}\in \mathcal{C}$ for $k\in \{3,5,\dots \}$, and $\overline{F}_{\xi _{k}}(x)=o(\overline{F}_{\xi _{1}}(x))$ for $k\in \{2,4,6,\dots \}$,
  • (c) $\underset{x\to \infty }{\limsup }\underset{n\geqslant 1}{\sup }\displaystyle\frac{1}{n\overline{F}_{\xi _{1}}(x)}{\displaystyle\sum \limits_{i=1}^{n}}\overline{F}_{\xi _{i}}(x)\leqslant 1$,
  • (d) all moments of the r.v. η are finite.
Note that $\xi _{1}$ does not satisfy condition (c) of Theorem 7 in the case $q\geqslant 1/2$. Hence, Example 1 describes the situation where Theorem 6 should be used instead of Theorem 7.
Example 2.
Let $\{\xi _{1},\xi _{2},\dots \}$ be independent r.v.s such that $\xi _{k}$ are distributed according to the Pareto law (with tail index $\alpha =2$) for all odd k, and $\xi _{k}$ are exponentially distributed (with parameter equal to 1) for all even k, that is,
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle \overline{F}_{\xi _{k}}(x)=\frac{1}{{x}^{2}},\hspace{1em}x\geqslant 1,\hspace{2.5pt}k\in \{1,3,5,\dots \},\\{} & & \displaystyle \overline{F}_{\xi _{k}}(x)={\mathrm{e}}^{-x},\hspace{1em}x\geqslant 0,\hspace{2.5pt}k\in \{2,4,6,\dots \}.\end{array}\]
In addition, let η be a counting r.v independent of $\{\xi _{1},\xi _{2},\dots \}$ that has the Zeta distribution with parameter 4, that is,
\[ \mathbb{P}(\eta =m)=\frac{1}{\zeta (4)}\frac{1}{{(m+1)}^{4}},\hspace{1em}m\in \mathbb{N}_{0},\]
where ζ denotes the Riemann zeta function.
Theorem 7 implies that the d.f. of the randomly stopped sum $S_{\eta }$ belongs to the class $\mathcal{C}$ because:
  • (a) $F_{\xi _{1}}\in \mathcal{C}$,
  • (b) $F_{\xi _{k}}\in \mathcal{C}$ for $k\in \{3,5,\dots \}$, and $\overline{F}_{\xi _{k}}(x)=o(\overline{F}_{\xi _{1}}(x))$ for $k\in \{2,4,6,\dots \}$,
  • (c) $\mathbb{E}\xi _{1}=2$,
  • (d) $\overline{F}_{\eta }(x)=o(\overline{F}_{\xi _{1}}(x))$,
  • (e) $\underset{x\to \infty }{\limsup }\underset{n\geqslant 1}{\sup }\displaystyle\frac{1}{n\overline{F}_{\xi _{1}}(x)}{\displaystyle\sum \limits_{i=1}^{n}}\overline{F}_{\xi _{i}}(x)\leqslant 1$,
  • (f) $\underset{k\in \mathbb{N}}{\max }\mathbb{E}\xi _{k}=2$.
Regarding condition (d), it should be noted that the Zeta distribution with parameter 4 is a discrete version of Pareto distribution with tail index 3.
Note that η does not satisfy the condition (d) of Theorem 6 because ${J_{F_{\xi _{1}}}^{+}}=2$ and $\mathbb{E}{\eta }^{3}=\infty $. Hence, Example 2 describes the situation where Theorem 7 should be used instead of Theorem 6.

3 Auxiliary lemmas

This section deals with several auxiliary lemmas. The first lemma is Theorem 3.1 in [3] (see also Theorem 2.1 in [15]).
Lemma 1.
Let $\{X_{1},X_{2},\dots X_{n}\}$ be independent real-valued r.v.s. If $F_{X_{k}}\in \mathcal{C}$ for each $k\in \{1,2,\dots ,n\}$, then
\[ \mathbb{P}\Bigg(\hspace{0.1667em}{\sum \limits_{i=1}^{n}}X_{i}>x\Bigg)\sim {\sum \limits_{i=1}^{n}}\overline{F}_{X_{i}}(x).\]
The following statement about nonnegative subexponential distributions was proved in Proposition 1 of [10] and later generalized to a wider distribution class in Corollary 3.19 of [12].
Lemma 2.
Let $\{X_{1},X_{2},\dots X_{n}\}$ be independent real-valued r.v.s. Assume that $\overline{F}_{X_{i}}/\overline{F}(x)\underset{x\to \infty }{\to }b_{i}$ for some subexponential d.f. F and some constants $b_{i}\geqslant 0$, $i\in \{1,2,\dots n\}$. Then
\[ \frac{\overline{F_{X_{1}}\ast F_{X_{2}}\ast \cdots \ast F_{X_{n}}}(x)}{\overline{F}(x)}\underset{x\to \infty }{\to }{\sum \limits_{i=1}^{n}}b_{i}.\]
In the next lemma, we show in which cases the convolution $F_{X_{1}}\ast F_{X_{2}}\ast \cdots \ast F_{X_{n}}$ belongs to the class $\mathcal{C}$.
Lemma 3.
Let $\{X_{1},X_{2},\dots ,X_{n}\},n\in \mathbb{N}$, be independent real-valued r.v.s. Then the d.f. $F_{\varSigma _{n}}$ of the sum $\varSigma _{n}=X_{1}+X_{2}+\cdots +X_{n}$ belongs to the class $\mathcal{C}$ if the following conditions are satisfied:
  • (a) $F_{X_{1}}\in \mathcal{C}$,
  • (b) for each $k=2,\dots ,n$, either $F_{X_{k}}\in \mathcal{C}$ or $\overline{F}_{X_{k}}(x)=o(\overline{F}_{X_{1}}(x))$.
Proof.
Evidently, we can suppose that $n\geqslant 2$. We split our proof into two parts.
First part. Suppose that $F_{X_{k}}\in \mathcal{C}$ for all $k\in \{1,2,\dots ,n\}$. In such a case, the lemma follows from Lemma 1 and the inequality
(3)
\[ \frac{a_{1}+a_{2}+\cdots +a_{m}}{b_{1}+b_{2}+\cdots +b_{m}}\leqslant \max \bigg\{\frac{a_{1}}{b_{1}},\frac{a_{2}}{b_{2}},\dots ,\frac{a_{m}}{b_{m}}\bigg\}\]
for $a_{i}\geqslant 0$ and $b_{i}>0$, $i=1,2,\dots ,m$.
Namely, using the relation of Lemma 1 and estimate (3), we get that
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \underset{x\to \infty }{\limsup }\frac{\overline{F}_{\varSigma _{n}}(xy)}{\overline{F}_{\varSigma _{n}}(x)}& \displaystyle =\underset{x\to \infty }{\limsup }\frac{{\textstyle\sum _{k=1}^{n}}\overline{F}_{X_{k}}(xy)}{{\textstyle\sum _{k=1}^{n}}\overline{F}_{X_{k}}(x)}\\{} & \displaystyle \leqslant \underset{1\leqslant k\leqslant n}{\max }\underset{x\to \infty }{\limsup }\frac{\overline{F}_{X_{k}}(xy)}{\overline{F}_{X_{k}}(x)}\end{array}\]
for arbitrary $y\in (0,1)$.
Since $F_{X_{k}}\in \mathcal{C}$ for each k, the last estimate implies that the d.f. $F_{\varSigma _{n}}$ has a consistently varying tail, as desired.
Second part. Now suppose that $F_{X_{k}}\notin \mathcal{C}$ for some of indexes $k\in \{2,3,\dots ,n\}$. By the conditions of the lemma we have that $\overline{F}_{X_{k}}(x)=o(\overline{F}_{X_{1}}(x))$ for such k. Let $\mathcal{K}\subset \{2,3,\dots ,n\}$ be the subset of indexes k such that
\[ F_{X_{k}}\notin \mathcal{C}\hspace{1em}\text{and}\hspace{1em}\overline{F}_{X_{k}}(x)=o\big(\overline{F}_{X_{1}}(x)\big).\]
By Lemma 2,
\[ \overline{F}_{\widehat{\varSigma }_{n}}(x)\sim \overline{F}_{X_{1}}(x),\]
where
\[ \widehat{\varSigma }_{n}=X_{1}+\sum \limits_{k\in \mathcal{K}}X_{k}.\]
Hence,
(4)
\[ \underset{x\to \infty }{\limsup }\frac{\overline{F}_{\widehat{\varSigma }_{n}}(xy)}{\overline{F}_{\widehat{\varSigma }_{n}}(x)}=\underset{x\to \infty }{\limsup }\frac{\overline{F}_{X_{1}}(xy)}{\overline{F}_{X_{1}}(x)}\]
for every $y\in (0,1)$.
Equality (4) implies immediately that the d.f. $F_{\widehat{\varSigma }_{n}}$ belongs to the class $\mathcal{C}$. Therefore, the d.f. $F_{\varSigma _{n}}$ also belongs to the class $\mathcal{C}$ according to the first part of the proof because
\[ \varSigma _{n}=\widehat{\varSigma }_{n}+\sum \limits_{k\notin \mathcal{K}}X_{k}\]
and $F_{X_{k}}\in \mathcal{C}$ for each $k\notin \mathcal{K}$. The lemma is proved.  □
The following two statements about dominatedly varying distributions are Lemma 3.2 and Lemma 3.3 in [6]. Since any consistently varying distribution is also dominatingly varying, these statements will be useful in the proofs of our main results concerning the class $\mathcal{C}$.
Lemma 4.
Let $\{X_{1},X_{2},\dots \}$ be independent real-valued r.v.s, and $F_{X_{\nu }}\in \mathcal{D}$ for some $\nu \geqslant 1$. Suppose, in addition, that
\[ \underset{x\to \infty }{\limsup }\underset{n\geqslant \nu }{\sup }\frac{1}{n\overline{F}_{X_{\nu }}(x)}{\sum \limits_{i=1}^{n}}\overline{F}_{X_{i}}(x)<\infty .\]
Then, for each $p>{J_{F_{X_{\nu }}}^{+}}$, there exists a positive constant $c_{1}$ such that
(5)
\[ \overline{F}_{S_{n}}(x)\leqslant c_{1}{n}^{p+1}\overline{F}_{X_{\nu }}(x)\]
for all $n\geqslant \nu $ and $x\geqslant 0$.
In fact, Lemma 4 is proved in [6] for nonnegative r.v.s. However, the lemma remains valid for real-valued r.v.s. To see this, it suffices to observe that $\mathbb{P}(X_{1}+X_{2}+\cdots +X_{n}>x)\leqslant \mathbb{P}({X_{1}^{+}}+{X_{2}^{+}}\cdots +{X_{n}^{+}}>x)$ and $\mathbb{P}(X_{k}>x)=\mathbb{P}({X_{k}^{+}}>x)$, where $n\in \mathbb{N}$, $k\in \{1,2,\dots ,n\}$, $x\geqslant 0$, and ${a}^{+}$ denotes the positive part of a.
Lemma 5.
Let $\{X_{1},X_{2},\dots \}$ be independent real-valued r.v.s, and $F_{X_{\nu }}\in \mathcal{D}$ for some $\nu \geqslant 1$. Let, in addition,
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle \underset{u\to \infty }{\lim }\underset{n\geqslant \nu }{\sup }\frac{1}{n}{\sum \limits_{k=1}^{n}}\mathbb{E}\big(|X_{k}|\mathbb{1}_{\{X_{k}\leqslant -u\}}\big)=0,\\{} & & \displaystyle \underset{x\to \infty }{\limsup }\underset{n\geqslant \nu }{\sup }\frac{1}{n\overline{F}_{X_{\nu }}(x)}{\sum \limits_{i=1}^{n}}\overline{F}_{X_{i}}(x)<\infty ,\end{array}\]
and $\mathbb{E}X_{k}=\mathbb{E}{X_{k}^{+}}-\mathbb{E}{X_{k}^{-}}=0$ for $k\in \mathbb{N}$. Then, for each $\gamma >0$, there exists a positive constant $c_{2}=c_{2}(\gamma )$ such that
\[ \mathbb{P}(S_{n}>x)\leqslant c_{2}n\overline{F}_{X_{\nu }}(x)\]
for all $x\geqslant \gamma n$ and all $n\geqslant \nu $.

4 Proofs of the main results

Proof of Theorem 5.
It suffices to prove that
(6)
\[ \underset{y\uparrow 1}{\limsup }\underset{x\to \infty }{\limsup }\frac{\overline{F}_{S_{\eta }}(xy)}{\overline{F}_{S_{\eta }}(x)}\leqslant 1.\]
According to estimate (3), for $x>0$ and $y\in (0,1)$, we have
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \frac{\overline{F}_{S_{\eta }}(xy)}{\overline{F}_{S_{\eta }}(x)}& \displaystyle =\frac{{\textstyle\sum _{\begin{array}{c} n=1\\{} n\in \mathrm{supp}(\eta )\end{array}}^{D}}\mathbb{P}(S_{n}>xy)\mathbb{P}(\eta =n)}{{\textstyle\sum _{\begin{array}{c} n=1\\{} n\in \mathrm{supp}(\eta )\end{array}}^{D}}\mathbb{P}(S_{n}>x)\mathbb{P}(\eta =n)}\leqslant \underset{\begin{array}{c} 1\leqslant n\leqslant D\\{} n\in \mathrm{supp}(\eta )\end{array}}{\max }\frac{\mathbb{P}(S_{n}>xy)}{\mathbb{P}(S_{n}>x)}.\end{array}\]
Hence, by Lemma 3,
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \underset{y\uparrow 1}{\limsup }\underset{x\to \infty }{\limsup }\frac{\overline{F}_{S_{\eta }}(xy)}{\overline{F}_{S_{\eta }}(x)}& \displaystyle \leqslant \underset{y\uparrow 1}{\limsup }\underset{x\to \infty }{\limsup }\underset{\begin{array}{c} 1\leqslant n\leqslant D\\{} n\in \mathrm{supp}(\eta )\end{array}}{\max }\frac{\overline{F}_{S_{n}}(xy)}{\overline{F}_{S_{n}}(x)}\\{} & \displaystyle \leqslant \underset{\begin{array}{c} 1\leqslant n\leqslant D\\{} n\in \mathrm{supp}(\eta )\end{array}}{\max }\underset{y\uparrow 1}{\limsup }\underset{x\to \infty }{\limsup }\frac{\overline{F}_{S_{n}}(xy)}{\overline{F}_{S_{n}}(x)}=1,\end{array}\]
which implies the desired estimate (6). The theorem is proved.  □
Proof of Theorem 6.
As in Theorem 5, it suffices to prove inequality (6). For all $K\in \mathbb{N}$ and $x>0$, we have
\[ \mathbb{P}(S_{\eta }>x)=\Bigg({\sum \limits_{n=1}^{K}}+{\sum \limits_{n=K+1}^{\infty }}\Bigg)\mathbb{P}(S_{n}>x)\mathbb{P}(\eta =n).\]
Therefore, for $x>0$ and $y\in (0,1)$, we have
(7)
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \frac{\mathbb{P}(S_{\eta }>xy)}{\mathbb{P}(S_{\eta }>x)}& \displaystyle =\frac{{\textstyle\sum _{n=1}^{K}}\mathbb{P}(S_{n}>xy)\mathbb{P}(\eta =n)}{\mathbb{P}(S_{\eta }>x)}\\{} & \displaystyle \hspace{1em}+\hspace{2.5pt}\frac{{\textstyle\sum _{n=K+1}^{\infty }}\mathbb{P}(S_{n}>xy)\mathbb{P}(\eta =n)}{\mathbb{P}(S_{\eta }>x)}\\{} & \displaystyle =:\mathcal{J}_{1}+\mathcal{J}_{2}.\end{array}\]
The random variable η is not degenerate at zero, so there exists $a\in \mathbb{N}$ such that $\mathbb{P}(\eta =a)>0$. If $K\geqslant a$, then using inequality (3), we get
\[ \mathcal{J}_{1}\leqslant \frac{{\textstyle\sum _{\begin{array}{c} n=1\\{} n\in \mathrm{supp}(\eta )\end{array}}^{K}}\mathbb{P}(S_{n}>xy)\mathbb{P}(\eta =n)}{{\textstyle\sum _{\begin{array}{c}n=1\\{}n\in \mathrm{supp}(\eta )\end{array}}^{K}}\mathbb{P}(S_{n}>x)\mathbb{P}(\eta =n)}\leqslant \underset{\begin{array}{c} 1\leqslant n\leqslant K\\{} n\in \mathrm{supp}(\eta )\end{array}}{\max }\frac{\mathbb{P}(S_{n}>xy)}{\mathbb{P}(S_{n}>x)}.\]
Similarly as in the proof of Theorem 5, it follows that
(8)
\[ \underset{y\uparrow 1}{\limsup }\underset{x\to \infty }{\limsup }\mathcal{J}_{1}\leqslant \underset{\begin{array}{c}1\leqslant n\leqslant K\\{} n\in \mathrm{supp}(\eta )\end{array}}{\max }\underset{y\uparrow 1}{\limsup }\underset{x\to \infty }{\limsup }\frac{\overline{F}_{S_{n}}(xy)}{\overline{F}_{S_{n}}(x)}=1.\]
Since $\mathcal{C}\subset \mathcal{D}$, we can use Lemma 4 for the numerator of $\mathcal{J}_{2}$ to obtain
\[ {\sum \limits_{n=K+1}^{\infty }}\mathbb{P}(S_{n}>xy)\mathbb{P}(\eta =n)\leqslant c_{3}\overline{F}_{\xi _{1}}(xy){\sum \limits_{n=K+1}^{\infty }}{n}^{p+1}\mathbb{P}(\eta =n)\]
with some positive constant $c_{3}$. For the denominator of $\mathcal{J}_{2}$, we have that
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \mathbb{P}(S_{\eta }>x)& \displaystyle ={\sum \limits_{n=1}^{\infty }}\mathbb{P}(S_{n}>x)\mathbb{P}(\eta =n)\\{} & \displaystyle \geqslant \mathbb{P}(S_{a}>x)\mathbb{P}(\eta =a).\end{array}\]
The conditions of the theorem imply that
\[ S_{a}=\xi _{1}+\sum \limits_{k\in \mathcal{K}_{a}}\xi _{k}+\sum \limits_{k\notin \mathcal{K}_{a}}\xi _{k},\]
where $\mathcal{K}_{a}=\{k\in \{2,\dots ,a\}:F_{\xi _{k}}\notin \mathcal{C},\overline{F}_{\xi _{k}}(x)=o(\hspace{0.1667em}\overline{F}_{\xi _{1}}(x))\}$.
By Lemma 2
\[ \overline{F}_{\widehat{S}_{a}}(x)/\overline{F}_{\xi _{1}}(x)\underset{x\to \infty }{\to }1,\]
where $F_{\widehat{S}_{a}}$ is the d.f. of the sum
\[ \widehat{S}_{a}=\xi _{1}+\sum \limits_{k\in \mathcal{K}_{a}}\xi _{k}\]
In addition, by Lemma 3 we have that the d.f. $F_{\widehat{S}_{a}}$ belongs to the class $\mathcal{C}$.
If $k\notin \mathcal{K}_{a}$, then $F_{\xi _{k}}\in \mathcal{C}$ by the conditions of the theorem. This fact and Lemma 1 imply that
\[ \underset{x\to \infty }{\liminf }\frac{\mathbb{P}(S_{a}>x)}{\overline{F}_{\xi _{1}}(x)}\geqslant 1+\sum \limits_{k\notin \mathcal{K}_{a}}\underset{x\to \infty }{\liminf }\frac{\overline{F}_{\xi _{k}}(x)}{\overline{F}_{\xi _{1}}(x)}.\]
Hence,
(9)
\[ \mathbb{P}(S_{\eta }>x)\geqslant \frac{1}{2}\overline{F}_{\xi _{1}}(x)\mathbb{P}(\eta =a)\]
for x sufficiently large. Therefore,
(10)
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \underset{y\uparrow 1}{\limsup }\underset{x\to \infty }{\limsup }\mathcal{J}_{2}\\{} & \displaystyle \hspace{1em}\leqslant \frac{2\hspace{0.1667em}c_{3}}{\mathbb{P}(\eta =a)}\bigg(\underset{y\uparrow 1}{\limsup }\underset{x\to \infty }{\limsup }\frac{\overline{F}_{\xi _{1}}(xy)}{\overline{F}_{\xi _{1}}(x)}\bigg){\sum \limits_{n=K+1}^{\infty }}{n}^{p+1}\mathbb{P}(\eta =n).\end{array}\]
Estimates (7), (8), and (10) imply that
\[ \underset{y\uparrow 1}{\limsup }\underset{x\to \infty }{\limsup }\frac{\mathbb{P}(S_{\eta }>xy)}{\mathbb{P}(S_{\eta }>x)}\leqslant 1+\frac{2\hspace{0.1667em}c_{3}}{\mathbb{P}(\eta =a)}\mathbb{E}{\eta }^{p+1}\mathbb{1}_{\{\eta >K\}}\]
for arbitrary $K\geqslant a$.
Letting K tend to infinity, we get the desired estimate (6) due to condition (d). The theorem is proved.  □
Proof of Theorem 7.
Once again, it suffices to prove inequality (6).
By condition (e) we have that there exist two positive constants $c_{4}$ and $c_{5}$ such that
\[ {\sum \limits_{i=1}^{n}}\overline{F}_{\xi _{i}}(x)\leqslant c_{5}n\overline{F}_{\xi _{1}}(x),\hspace{1em}x\geqslant c_{4},\hspace{2.5pt}n\in \mathbb{N}.\]
Therefore,
(11)
\[ \mathbb{E}S_{n}={\sum \limits_{j=1}^{n}}\mathbb{E}\xi _{j}={\sum \limits_{j=1}^{n}}\Bigg(\hspace{0.1667em}{\int _{0}^{c_{4}}}+{\int _{c_{4}}^{\infty }}\hspace{0.1667em}\Bigg)\overline{F}_{\xi _{j}}(u)du\leqslant c_{4}n+c_{5}n\mathbb{E}\xi _{1}=:c_{6}n\]
for a positive constant $c_{6}$ and all $n\in \mathbb{N}$.
If $K\in \mathbb{N}$ and $x>4Kc_{6}$, then we have
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \mathbb{P}(S_{\eta }>x)& \displaystyle =\mathbb{P}(S_{\eta }>x,\eta \leqslant K)\\{} & \displaystyle \hspace{1em}+\mathbb{P}\bigg(S_{\eta }>x,K<\eta \leqslant \frac{x}{4c_{6}}\bigg)\\{} & \displaystyle \hspace{1em}+\mathbb{P}\bigg(S_{\eta }>x,\eta >\frac{x}{4c_{6}}\bigg).\end{array}\]
Therefore,
(12)
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \frac{\mathbb{P}(S_{\eta }>xy)}{\mathbb{P}(S_{\eta }>x)}& \displaystyle =\frac{\mathbb{P}(S_{\eta }>xy,\eta \leqslant K)}{\mathbb{P}(S_{\eta }>x)}\\{} & \displaystyle \hspace{1em}+\frac{\mathbb{P}\big(S_{\eta }>xy,K<\eta \leqslant \frac{xy}{4c_{6}}\big)}{\mathbb{P}(S_{\eta }>x)}\\{} & \displaystyle \hspace{1em}+\frac{\mathbb{P}\big(S_{\eta }>xy,\eta >\frac{xy}{4c_{6}}\big)}{\mathbb{P}(S_{\eta }>x)}\\{} & \displaystyle =:\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{I}_{3}\end{array}\]
if $xy>4Kc_{6}$, $x>0$, and $y\in (0,1)$.
The random variable η is not degenerate at zero, so $\mathbb{P}(\eta =a)>0$ for some $a\in \mathbb{N}$. If $K\geqslant a$, then
(13)
\[ \underset{y\uparrow 1}{\limsup }\underset{x\to \infty }{\limsup }\mathcal{I}_{1}\leqslant 1\]
similarly to estimate (8) in Theorem 6.
For the numerator of $\mathcal{I}_{2}$, we have
(14)
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \mathcal{I}_{2,1}:=& \displaystyle \mathbb{P}\bigg(S_{\eta }>xy,K<\eta \leqslant \frac{xy}{4c_{6}}\bigg)\\{} \displaystyle =& \displaystyle \sum \limits_{K<n\leqslant \frac{xy}{4c_{6}}}\mathbb{P}\Bigg({\sum \limits_{i=1}^{n}}(\xi _{i}-\mathbb{E}\xi _{i})>xy-{\sum \limits_{j=1}^{n}}\mathbb{E}\xi _{j}\Bigg)\mathbb{P}(\eta =n)\\{} \displaystyle \leqslant & \displaystyle \sum \limits_{K<n\leqslant \frac{xy}{4c_{6}}}\mathbb{P}\Bigg({\sum \limits_{i=1}^{n}}(\xi _{i}-\mathbb{E}\xi _{i})>\frac{3}{4}xy\Bigg)\mathbb{P}(\eta =n)\end{array}\]
by inequality (11).
The random variables $\xi _{1}-\mathbb{E}\xi _{1}$, $\xi _{2}-\mathbb{E}\xi _{2},\dots \hspace{0.1667em}$ satisfy the conditions of Lemma 5. Namely, $\mathbb{E}(\xi _{k}-\mathbb{E}\xi _{k})=0$ for $k\in \mathbb{N}$ and $F_{\xi _{1}-\mathbb{E}\xi _{1}}\in \mathcal{C}\subset \mathcal{D}$ obviously. In addition,
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \underset{x\to \infty }{\limsup }\hspace{0.1667em}\underset{n\geqslant 1}{\sup }\frac{1}{n\hspace{0.1667em}\mathbb{P}(\xi _{1}-\mathbb{E}\xi _{1}>x)}{\sum \limits_{k=1}^{n}}\mathbb{P}(\xi _{i}-\mathbb{E}\xi _{i}>x)<\infty \end{array}\]
by conditions (a), (c) and (e). Finally,
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \underset{u\to \infty }{\limsup }\hspace{0.1667em}\underset{n\geqslant 1}{\sup }\frac{1}{n}{\sum \limits_{k=1}^{n}}\mathbb{E}(|\xi _{k}-\mathbb{E}\xi _{k}|\mathbb{1}_{\{\xi _{k}-\mathbb{E}\xi _{k}\leqslant -u\}})\\{} & \displaystyle \hspace{1em}=\underset{u\to \infty }{\limsup }\hspace{0.1667em}\underset{n\geqslant 1}{\sup }\frac{1}{n}{\sum \limits_{k=1}^{n}}\mathbb{E}\big((\mathbb{E}\xi _{k}-\xi _{k})\mathbb{1}_{\{\xi _{k}-\mathbb{E}\xi _{k}\leqslant -u\}}\big)\\{} & \displaystyle \leqslant \underset{u\to \infty }{\limsup }\underset{n\geqslant 1}{\sup }\frac{1}{n}\sum \limits_{\begin{array}{c}1\leqslant k\leqslant n\\{}\mathbb{E}\xi _{k}\geqslant u\end{array}}\mathbb{E}\xi _{k}=0\end{array}\]
because of condition (f). So, applying the estimate of Lemma 5 to (14), we get
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \mathcal{I}_{2,1}& \displaystyle \leqslant c_{7}\sum \limits_{K<n\leqslant \frac{xy}{4c_{6}}}n\overline{F}_{\xi _{1}}\bigg(\frac{3}{4}xy+\mathbb{E}\xi _{1}\bigg)\mathbb{P}(\eta =n)\\{} & \displaystyle \leqslant \hspace{2.5pt}c_{7}\overline{F}_{\xi _{1}}\Big(\hspace{0.1667em}\frac{3}{4}xy\Big)\mathbb{E}\eta \mathbb{1}_{\{\eta >K\}}\end{array}\]
with a positive constant $c_{7}$. For the denominator of $\mathcal{I}_{2}$, we can use the inequality
(15)
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \mathbb{P}(S_{\eta }>x)& \displaystyle ={\sum \limits_{n=1}^{\infty }}\mathbb{P}(S_{n}>x)\mathbb{P}(\eta =n)\\{} & \displaystyle \geqslant {\sum \limits_{n=1}^{\infty }}\mathbb{P}(\xi _{1}>x)\mathbb{P}(\eta =n)\\{} & \displaystyle \geqslant \overline{F}_{\xi _{1}}(x)\mathbb{P}(\eta =a)\end{array}\]
since the r.v.s $\{\xi _{1},\xi _{2},\dots \}$ are nonnegative by assumption. Hence,
\[ \mathcal{I}_{2}\leqslant \frac{c_{7}}{\mathbb{P}(\eta =a)}\mathbb{E}\eta \mathbb{1}_{\{\eta >K\}}\frac{\overline{F}_{\xi _{1}}\big(\frac{3}{4}xy\big)}{\overline{F}_{\xi _{1}}(x)}.\]
If $y\in (1/2,1)$, then the last estimate implies that
(16)
\[ \underset{x\to \infty }{\limsup }\mathcal{I}_{2}\leqslant \frac{c_{7}}{\mathbb{P}(\eta =a)}\mathbb{E}\eta \mathbb{1}_{\{\eta >K\}}\underset{x\to \infty }{\limsup }\hspace{2.5pt}\frac{\overline{F}_{\xi _{1}}\big(\frac{3}{8}x\big)}{\overline{F}_{\xi _{1}}(x)}\leqslant c_{8}\mathbb{E}\eta \mathbb{1}_{\{\eta >K\}}\]
with some positive constant $c_{8}$ because $F_{\xi _{1}}\in \mathcal{C}\subset \mathcal{D}$.
Using inequality (15) again, we obtain
\[ \mathcal{I}_{3}\leqslant \frac{\mathbb{P}\big(\eta >\frac{xy}{4c_{6}}\big)}{\mathbb{P}(S_{\eta }>x)}\leqslant \frac{1}{\mathbb{P}(\eta =a)}\frac{\overline{F}_{\eta }\big(\frac{xy}{4c_{6}}\big)}{\overline{F}_{\xi _{1}}\big(\frac{xy}{4c_{6}}\big)}\frac{\overline{F}_{\xi _{1}}\big(\frac{xy}{4c_{6}}\big)}{\overline{F}_{\xi _{1}}(x)}.\]
Therefore, for $y\in (1/2,1)$, we get
(17)
\[ \underset{x\to \infty }{\limsup }\mathcal{I}_{3}\leqslant \frac{1}{\mathbb{P}(\eta =a)}\underset{x\to \infty }{\limsup }\frac{\overline{F}_{\eta }\big(\frac{xy}{4c_{6}}\big)}{\overline{F}_{\xi _{1}}\big(\frac{xy}{4c_{6}}\big)}\underset{x\to \infty }{\limsup }\frac{\overline{F}_{\xi _{1}}\big(\frac{xy}{4c_{6}}\big)}{\overline{F}_{\xi _{1}}(x)}=0\]
by condition (d).
Estimates (12), (13), (16), and (17) imply that
\[ \underset{y\uparrow 1}{\limsup }\underset{x\to \infty }{\limsup }\frac{\mathbb{P}(S_{\eta }>xy)}{\mathbb{P}(S_{\eta }>x)}\leqslant 1+c_{8}\mathbb{E}\eta \mathbb{1}_{\{\eta >K\}}\]
for $K\geqslant a$.
Letting K tend to infinity, we get the desired estimate (6) because $\mathbb{E}\eta <\infty $ by conditions (c) and (d). The theorem is proved.  □

References

[1] 
Albin, J.M.P.: A note on the closure of convolution power mixtures (random sums) of exponential distributions. J. Aust. Math. Soc. 84, 1–7 (2008). MR2469263. doi:10.1017/S1446788708000104
[2] 
Cai, J., Tang, Q.: On max-sum equivalence and convolution closure of heavy-tailed distributions and their applications. J. Appl. Probab. 41, 117–130 (2004). MR2036276. doi:10.1239/jap/1077134672
[3] 
Chen, Y., Yuen, K.C.: Sums of pairwise quasi-asymptotically independent random variables with consistent variation. Stoch. Models 25, 76–89 (2009). MR2494614. doi:10.1080/15326340802641006
[4] 
Chistyakov, V.P.: A theorem on sums of independent positive random variables and its application to branching processes. Theory Probab. Appl. 9, 640–648 (1964). doi:10.1137/1109088
[5] 
Cline, D.B.H.: Convolutions of distributions with exponential and subexponential tails. J. Aust. Math. Soc. A 43, 347–365 (1987). MR0904394. doi:10.1017/S1446788700029633
[6] 
Danilenko, S., Šiaulys, J.: Randomly stopped sums of not identically distributed heavy tailed random variables. Stat. Probab. Lett. 113, 84–93 (2016). MR3480399. doi:10.1016/j.spl.2016.03.001
[7] 
Danilenko, S., Paškauskaitė, S., Šiaulys, J.: Random convolution of inhomogeneous distributions with $\mathcal{O}$-exponential tail. Mod. Stoch. Theory Appl. 3, 79–94 (2016). doi:10.15559/16-VMSTA52
[8] 
Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer, New York (1997). 1997. MR1458613. doi:10.1007/978-3-642-33483-2
[9] 
Embrechts, P., Goldie, C.M.: On convolution tails. Stoch. Process. Appl. 13, 263–278 (1982). MR0671036. doi:10.1016/0304-4149(82)90013-8
[10] 
Embrechts, P., Goldie, C.M., Veraverbeke, N.: Subexponentiality and infinite divisibility. Z. Wahrscheinlichkeitstheor. Verw. Geb. 49, 335–347 (1979). MR0547833. doi:10.1007/BF00535504
[11] 
Embrechts, P., Omey, E.: A property of longtailed distributions. J. Appl. Probab. 21, 80–87 (1984). MR0732673. doi:10.2307/3213666
[12] 
Foss, S., Korshunov, D., Zachary, S.: An Introduction to Heavy-Tailed and Subexponential Distributions. Springer, New York (2011). MR2810144. doi:10.1007/978-1-4419-9473-8
[13] 
Klüppelberg, C.: Subexponential distributions and integrated tails. J. Appl. Probab. 25, 132–141 (1988). MR0929511. doi:10.2307/3214240
[14] 
Leipus, R., Šiaulys, J.: Closure of some heavy-tailed distribution classes under random convolution. Lith. Math. J. 52, 249–258 (2012). MR3020941. doi:10.1007/s10986-012-9171-7
[15] 
Wang, D., Tang, Q.: Tail probabilities of randomly weighted sums of random variables with dominated variation. Stoch. Models 22, 253–272 (2006). MR2220965. doi:10.1080/15326340600649029
[16] 
Watanabe, T., Yamamuro, K.: Ratio of the tail of an infinitely divisible distribution on the line to that of its Lévy measure. Electron. J. Probab. 15, 44–75 (2010). MR2578382. doi:10.1214/EJP.v15-732
[17] 
Xu, H., Foss, S., Wang, Y.: On closedness under convolution and convolution roots of the class of long-tailed distributions. Extremes 18, 605–628 (2015). MR3418770. doi:10.1007/s10687-015-0224-2
Reading mode PDF XML

Table of contents
  • 1 Introduction
  • 2 Main results
  • 3 Auxiliary lemmas
  • 4 Proofs of the main results
  • References

Copyright
© 2016 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Heavy tail consistently varying tail randomly stopped sum inhomogeneous distributions convolution closure random convolution closure

MSC2010
62E20 60E05 60F10 44A35

Metrics
since March 2018
1545

Article info
views

472

Full article
views

354

PDF
downloads

146

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

  • Figures
    1
  • Theorems
    7
vmsta-3-2-vmsta60-g001.jpg
Fig. 1.
Classes of heavy-tailed distributions.
Theorem 1.
Theorem 2.
Theorem 3.
Theorem 4 ([6], Theorem 2.1).
Theorem 5.
Theorem 6.
Theorem 7.
vmsta-3-2-vmsta60-g001.jpg
Fig. 1.
Classes of heavy-tailed distributions.
Theorem 1.
Let $\{\xi _{1},\xi _{2},\dots \}$ be independent copies of a nonnegative r.v. ξ with subexponential d.f. $F_{\xi }$. Let η be a counting r.v. independent of $\{\xi _{1},\xi _{2},\dots \}$. If $\mathbb{E}{(1+\delta )}^{\eta }<\infty $ for some $\delta >0$, then the d.f. $F_{S_{\eta }}\in \mathcal{S}$.
Theorem 2.
Let $\{\xi _{1},\xi _{2},\dots \}$ be i.i.d. nonnegative r.v.s with common d.f. $F_{\xi }\in \mathcal{D}$ and finite mean $\mathbb{E}\xi $. Let η be a counting r.v. independent of $\{\xi _{1},\xi _{2},\dots \}$ with d.f. $F_{\eta }$ and finite mean $\mathbb{E}\eta $. Then d.f. $F_{S_{\eta }}\in \mathcal{D}$ iff   $\min \{F_{\xi },F_{\eta }\}\in \mathcal{D}$.
Theorem 3.
Let $\{\xi _{1},\xi _{2},\dots \}$ be independent r.v.s, and η be a counting r.v. independent of $\{\xi _{1},\xi _{2},\dots \}$ with d.f. $F_{\eta }$. Then the d.f. $F_{S_{\eta }}\in \mathcal{L}$ if the following five conditions are satisfied:
  • (i) $\mathbb{P}(\eta \geqslant \kappa )>0$ for some $\kappa \in \mathbb{N}$;
  • (ii) for all $k\geqslant \kappa $, the d.f. $F_{S_{k}}$ of the sum $S_{k}$ is long tailed;
  • (iii) $\underset{k\geqslant 1}{\sup }\underset{x\in \mathbb{R}}{\sup }(F_{S_{k}}(x)-F_{S_{k}}(x-1))\sqrt{k}<\infty $;
  • (iv) $\underset{z\to \infty }{\limsup }\hspace{0.1667em}\underset{k\geqslant \kappa }{\sup }\hspace{0.1667em}\underset{x\geqslant k(z-1)+z}{\sup }\displaystyle\frac{\overline{F}_{S_{k}}(x-1)}{\overline{F}_{S_{k}}(x)}=1$;
  • (v) $\overline{F}_{\eta }(ax)=o(\sqrt{x}\hspace{0.1667em}\overline{F}_{S_{\kappa }}(x))$ for each $a>0$.
Theorem 4 ([6], Theorem 2.1).
Let r.v.s $\{\xi _{1},\xi _{2},\dots \}$ be nonnegative independent, not necessarily identically distributed, and η be a counting r.v. independent of $\{\xi _{1},\xi _{2},\dots \}$. Then the d.f $F_{S_{\eta }}$ belongs to the class $\mathcal{D}$ if the following three conditions are satisfied:
  • (i) $F_{\xi _{\kappa }}\in \mathcal{D}$ for some $\kappa \in \mathrm{supp}(\eta )$,
  • (ii) $\underset{x\to \infty }{\limsup }\underset{n\geqslant \kappa }{\sup }\displaystyle\frac{1}{n\overline{F}_{\xi _{\kappa }}(x)}{\displaystyle\sum \limits_{i=1}^{n}}\overline{F}_{\xi _{i}}(x)<\infty $,
  • (iii) $\mathbb{E}{\eta }^{p+1}<\infty $ for some $p>{J_{F_{\xi _{\kappa }}}^{+}}$.
Theorem 5.
Let $\{\xi _{1},\xi _{2},\dots ,\xi _{D}\}$, $D\in \mathbb{N}$, be independent real-valued r.v.s, and η be a counting r.v. independent of $\{\xi _{1},\xi _{2},\dots ,\xi _{D}\}$. Then the d.f. $F_{S_{\eta }}$ belongs to the class $\mathcal{C}$ if the following conditions are satisfied:
  • (a) $\mathbb{P}(\eta \leqslant D)=1$,
  • (b) $F_{\xi _{1}}\in \mathcal{C}$,
  • (c) for each $k=2,\dots ,D$, either $F_{\xi _{k}}\in \mathcal{C}$ or $\overline{F}_{\xi _{k}}(x)=o(\overline{F}_{\xi _{1}}(x))$.
Theorem 6.
Let $\{\xi _{1},\xi _{2},\dots \}$ be independent real-valued r.v.s, and η be a counting r.v. independent of $\{\xi _{1},\xi _{2},\dots \}$. Then the d.f. $F_{S_{\eta }}$ belongs to the class $\mathcal{C}$ if the following conditions are satisfied:
  • (a) $F_{\xi _{1}}\in \mathcal{C}$,
  • (b) for each $k\geqslant 2$, either $F_{\xi _{k}}\in \mathcal{C}$ or $\overline{F}_{\xi _{k}}(x)=o(\overline{F}_{\xi _{1}}(x))$,
  • (c) $\underset{x\to \infty }{\limsup }\underset{n\geqslant 1}{\sup }\displaystyle\frac{1}{n\overline{F}_{\xi _{1}}(x)}{\displaystyle\sum \limits_{i=1}^{n}}\overline{F}_{\xi _{i}}(x)<\infty $,
  • (d) $\mathbb{E}{\eta }^{p+1}<\infty $ for some $p>{J_{F_{\xi _{1}}}^{+}}$.
Theorem 7.
Let $\{\xi _{1},\xi _{2},\dots \}$ be independent nonnegative r.v.s, and η be a counting r.v. independent of $\{\xi _{1},\xi _{2},\dots \}$. Then the d.f. $F_{S_{\eta }}$ belongs to the class $\mathcal{C}$ if the following conditions are satisfied:
  • (a) $F_{\xi _{1}}\in \mathcal{C}$,
  • (b) for each $k\geqslant 2$, either $F_{\xi _{k}}\in \mathcal{C}$ or $\overline{F}_{\xi _{k}}(x)=o(\overline{F}_{\xi _{1}}(x))$,
  • (c) $\mathbb{E}\xi _{1}<\infty $,
  • (d) $\overline{F}_{\eta }(x)=o(\overline{F}_{\xi _{1}}(x))$,
  • (e) $\underset{x\to \infty }{\limsup }\underset{n\geqslant 1}{\sup }\displaystyle\frac{1}{n\overline{F}_{\xi _{1}}(x)}{\displaystyle\sum \limits_{i=1}^{n}}\overline{F}_{\xi _{i}}(x)<\infty $,
  • (f) $\underset{u\to \infty }{\limsup }\underset{n\geqslant 1}{\sup }\displaystyle\frac{1}{n}{\displaystyle\sum \limits_{\begin{array}{c} k=1\\{} \mathbb{E}\xi _{k}\geqslant u\end{array}}^{n}}\mathbb{E}\xi _{k}=0$.

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy