We investigate large deviation properties of the maximum likelihood drift parameter estimator for Ornstein–Uhlenbeck process driven by mixed fractional Brownian motion.
We develop a new technique to prove the faithfulness of the Hausdorff–Besicovitch dimension calculation of the family $\varPhi ({Q}^{\ast })$ of cylinders generated by ${Q}^{\ast }$-expansion of real numbers. All known sufficient conditions for the family $\varPhi ({Q}^{\ast })$ to be faithful for the Hausdorff–Besicovitch dimension calculation use different restrictions on entries $q_{0k}$ and $q_{(s-1)k}$. We show that these restrictions are of purely technical nature and can be removed. Based on these new results, we study fine fractal properties of random variables with independent ${Q}^{\ast }$-digits.
We consider a Cauchy problem for stochastic heat equation driven by a real harmonizable fractional stable process Z with Hurst parameter $H>1/2$ and stability index $\alpha >1$. It is shown that the approximations for its solution, which are defined by truncating the LePage series for Z, converge to the solution.
We establish the large deviation principle for solutions of one-dimensional SDEs with discontinuous coefficients. The main statement is formulated in a form similar to the classical Wentzel–Freidlin theorem, but under the considerably weaker assumption that the coefficients have no discontinuities of the second kind.
Let $\{\xi _{1},\xi _{2},\dots \}$ be a sequence of independent random variables, and η be a counting random variable independent of this sequence. We consider conditions for $\{\xi _{1},\xi _{2},\dots \}$ and η under which the distribution function of the random sum $S_{\eta }=\xi _{1}+\xi _{2}+\cdots +\xi _{\eta }$ belongs to the class of consistently varying distributions. In our consideration, the random variables $\{\xi _{1},\xi _{2},\dots \}$ are not necessarily identically distributed.
We consider the simulation of sample paths of a fractional Brownian motion with small values of the Hurst index and estimate the behavior of the expected maximum. We prove that, for each fixed N, the error of approximation $\mathbf{E}\max _{t\in [0,1]}{B}^{H}(t)-\mathbf{E}\max _{i=\overline{1,N}}{B}^{H}(i/N)$ grows rapidly to ∞ as the Hurst index tends to 0.
We study the asymptotic behavior of mixed functionals of the form $I_{T}(t)=F_{T}(\xi _{T}(t))+{\int _{0}^{t}}g_{T}(\xi _{T}(s))\hspace{0.1667em}d\xi _{T}(s)$, $t\ge 0$, as $T\to \infty $. Here $\xi _{T}(t)$ is a strong solution of the stochastic differential equation $d\xi _{T}(t)=a_{T}(\xi _{T}(t))\hspace{0.1667em}dt+dW_{T}(t)$, $T>0$ is a parameter, $a_{T}=a_{T}(x)$ are measurable functions such that $\left|a_{T}(x)\right|\le C_{T}$ for all $x\in \mathbb{R}$, $W_{T}(t)$ are standard Wiener processes, $F_{T}=F_{T}(x)$, $x\in \mathbb{R}$, are continuous functions, $g_{T}=g_{T}(x)$, $x\in \mathbb{R}$, are locally bounded functions, and everything is real-valued. The explicit form of the limiting processes for $I_{T}(t)$ is established under very nonregular dependence of $g_{T}$ and $a_{T}$ on the parameter T.