Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 3, Issue 2 (2016)
  4. Simulation paradoxes related to a fracti ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Simulation paradoxes related to a fractional Brownian motion with small Hurst index
Volume 3, Issue 2 (2016), pp. 181–190
Vitalii Makogin  

Authors

 
Placeholder
https://doi.org/10.15559/16-VMSTA59
Pub. online: 4 July 2016      Type: Research Article      Open accessOpen Access

Received
31 May 2016
Revised
19 June 2016
Accepted
20 June 2016
Published
4 July 2016

Abstract

We consider the simulation of sample paths of a fractional Brownian motion with small values of the Hurst index and estimate the behavior of the expected maximum. We prove that, for each fixed N, the error of approximation $\mathbf{E}\max _{t\in [0,1]}{B}^{H}(t)-\mathbf{E}\max _{i=\overline{1,N}}{B}^{H}(i/N)$ grows rapidly to ∞ as the Hurst index tends to 0.

References

[1] 
Borovkov, K., Mishura, Y., Novikov, A., Zhitlukhin, M.: Bounds for expected maxima of Gaussian processes and their discrete approximations. Stoch. Int. J. Probab. Stoch. Process. (2015). doi:10.1080/17442508.2015.1126282
[2] 
Clark, C.E.: The greatest of a finite set of random variables. Oper. Res. 9(2), 145–162 (1961). MR0125604
[3] 
Coeurjolly, J.-F.: Simulation and identification of the fractional Brownian motion: A bibliographical and comparative study. J. Stat. Softw. 5(7), 1–53 (2000)
[4] 
Delorme, M., Wiese, K.J.: Maximum of a fractional Brownian motion: Analytic results from perturbation theory. Phys. Rev. Lett. 115(21), 210601 (2015)
[5] 
Molchan, G.M.: Maximum of a fractional Brownian motion: Probabilities of small values. Commun. Math. Phys. 205(1), 97–111 (1999). MR1706900. doi:10.1007/s002200050669
[6] 
Sinai, Y.G.: Distribution of the maximum of a fractional Brownian motion. Russ. Math. Surv. 52(2), 359–378 (1997). MR1480141. doi:10.1070/RM1997v052n02ABEH001781
[7] 
Sudakov, V.N.: Geometric Problems in the Theory of Infinite-Dimensional Probability Distributions vol. 141. Am. Math. Soc. (1979). MR0530375
[8] 
Talagrand, M.: Lower classes for fractional Brownian motion. J. Theor. Probab. 9(1), 191–213 (1996). MR1371076. doi:10.1007/BF02213740
[9] 
Wood, A.T., Chan, G.: Simulation of stationary Gaussian processes in [0, 1]d. J. Comput. Graph. Stat. 3(4), 409–432 (1994). MR1323050. doi:10.2307/1390903

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2016 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Fractional Brownian motion Monte Carlo simulations expected maximum discrete approximation

MSC2010
65C50 60G22

Metrics
since March 2018
554

Article info
views

280

Full article
views

366

PDF
downloads

168

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy