Simulation paradoxes related to a fractional Brownian motion with small Hurst index
Volume 3, Issue 2 (2016), pp. 181–190
Pub. online: 4 July 2016
Type: Research Article
Open Access
Received
31 May 2016
31 May 2016
Revised
19 June 2016
19 June 2016
Accepted
20 June 2016
20 June 2016
Published
4 July 2016
4 July 2016
Abstract
We consider the simulation of sample paths of a fractional Brownian motion with small values of the Hurst index and estimate the behavior of the expected maximum. We prove that, for each fixed N, the error of approximation $\mathbf{E}\max _{t\in [0,1]}{B}^{H}(t)-\mathbf{E}\max _{i=\overline{1,N}}{B}^{H}(i/N)$ grows rapidly to ∞ as the Hurst index tends to 0.
References
Borovkov, K., Mishura, Y., Novikov, A., Zhitlukhin, M.: Bounds for expected maxima of Gaussian processes and their discrete approximations. Stoch. Int. J. Probab. Stoch. Process. (2015). doi:10.1080/17442508.2015.1126282
Clark, C.E.: The greatest of a finite set of random variables. Oper. Res. 9(2), 145–162 (1961). MR0125604
Molchan, G.M.: Maximum of a fractional Brownian motion: Probabilities of small values. Commun. Math. Phys. 205(1), 97–111 (1999). MR1706900. doi:10.1007/s002200050669
Sinai, Y.G.: Distribution of the maximum of a fractional Brownian motion. Russ. Math. Surv. 52(2), 359–378 (1997). MR1480141. doi:10.1070/RM1997v052n02ABEH001781
Sudakov, V.N.: Geometric Problems in the Theory of Infinite-Dimensional Probability Distributions vol. 141. Am. Math. Soc. (1979). MR0530375
Talagrand, M.: Lower classes for fractional Brownian motion. J. Theor. Probab. 9(1), 191–213 (1996). MR1371076. doi:10.1007/BF02213740
Wood, A.T., Chan, G.: Simulation of stationary Gaussian processes in [0, 1]d. J. Comput. Graph. Stat. 3(4), 409–432 (1994). MR1323050. doi:10.2307/1390903